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Waves—I

16-1 TRANSVERSE WAVES

After reading this module, you should be able to . . .

16.01 Identify the three main types of waves.

16.02 Distinguish between transverse waves and longitudi-
nal waves.

16.03 Given a displacement function for a traverse wave,
determine amplitude , angular wave number k, angular
frequency v, phase constant f, and direction of travel,
and calculate the phase kx � vt � f and the displace-
ment at any given time and position.

16.04 Given a displacement function for a traverse
wave, calculate the time between two given displace-
ments.

16.05 Sketch a graph of a transverse wave as a function
of position, identifying amplitude , wavelength l, where
the slope is greatest, where it is zero, and where the
string elements have positive velocity, negative velocity,
and zero velocity.

16.06 Given a graph of displacement versus time for 
a transverse wave, determine amplitude and
period T.

ym

ym

ym

16.07 Describe the effect on a transverse wave of changing
phase constant f.

16.08 Apply the relation between the wave speed v, the
distance traveled by the wave, and the time required for
that travel.

16.09 Apply the relationships between wave speed v,
angular frequency v, angular wave number k, wavelength
l, period T, and frequency f.

16.10 Describe the motion of a string element as a trans-
verse wave moves through its location, and identify
when its transverse speed is zero and when it is maxi-
mum.

16.11 Calculate the transverse velocity u(t) of a string
element as a transverse wave moves through its location.

16.12 Calculate the transverse acceleration a(t) of a 
string element as a transverse wave moves through its
location.

16.13 Given a graph of displacement, transverse velocity,
or transverse acceleration, determine the phase con-
stant f.

Key Ideas

Learning Objectives

392

● Mechanical waves can exist only in material media and are
governed by Newton’s laws. Transverse mechanical waves,
like those on a stretched string, are waves in which the
particles of the medium oscillate perpendicular to the wave’s
direction of travel. Waves in which the particles of the
medium oscillate parallel to the wave’s direction of travel are
longitudinal waves.

● A sinusoidal wave moving in the positive direction of an
x axis has the mathematical form

y(x, t) � ym sin(kx � vt),

where ym is the amplitude (magnitude of the maximum dis-
placement) of the wave, k is the angular wave number, v is
the angular frequency, and kx � vt is the phase. The wave-
length l is related to k by

k �
2p

l
.

● The period T and frequency f of the wave are related to v by

● The wave speed v (the speed of the wave along the string) is
related to these other parameters by

● Any function of the form

y(x, t) � h(kx � vt)

can represent a traveling wave with a wave speed as given
above and a wave shape given by the mathematical form of h.
The plus sign denotes a wave traveling in the negative
direction of the x axis, and the minus sign a wave traveling in
the positive direction.

v �
v

k
�

l

T
� lf.

v

2p
� f �

1
T

.
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39316-1 TRANSVERSE WAVES

What Is Physics?
One of the primary subjects of physics is waves. To see how important waves are
in the modern world, just consider the music industry. Every piece of music you
hear, from some retro-punk band playing in a campus dive to the most eloquent
concerto playing on the web, depends on performers producing waves and your
detecting those waves. In between production and detection, the information
carried by the waves might need to be transmitted (as in a live performance on
the web) or recorded and then reproduced (as with CDs, DVDs, or the other
devices currently being developed in engineering labs worldwide). The 
financial importance of controlling music waves is staggering, and the rewards to
engineers who develop new control techniques can be rich.

This chapter focuses on waves traveling along a stretched string, such as on
a guitar. The next chapter focuses on sound waves, such as those produced by
a guitar string being played. Before we do all this, though, our first job is to
classify the countless waves of the everyday world into basic types.

Types of Waves
Waves are of three main types:

1. Mechanical waves. These waves are most familiar because we encounter them
almost constantly; common examples include water waves, sound waves, and
seismic waves. All these waves have two central features: They are governed
by Newton’s laws, and they can exist only within a material medium, such as
water, air, and rock.

2. Electromagnetic waves. These waves are less familiar, but you use them
constantly; common examples include visible and ultraviolet light, radio and
television waves, microwaves, x rays, and radar waves. These waves require no
material medium to exist. Light waves from stars, for example, travel through
the vacuum of space to reach us. All electromagnetic waves travel through a
vacuum at the same speed c � 299 792 458 m/s.

3. Matter waves. Although these waves are commonly used in modern technol-
ogy, they are probably very unfamiliar to you. These waves are associated
with electrons, protons, and other fundamental particles, and even atoms and
molecules. Because we commonly think of these particles as constituting
matter, such waves are called matter waves.

Much of what we discuss in this chapter applies to waves of all kinds.
However, for specific examples we shall refer to mechanical waves.

Transverse and Longitudinal Waves
A wave sent along a stretched, taut string is the simplest mechanical wave. If you
give one end of a stretched string a single up-and-down jerk, a wave in the form
of a single pulse travels along the string. This pulse and its motion can occur
because the string is under tension.When you pull your end of the string upward,
it begins to pull upward on the adjacent section of the string via tension between
the two sections. As the adjacent section moves upward, it begins to pull the next
section upward, and so on. Meanwhile, you have pulled down on your end of the
string. As each section moves upward in turn, it begins to be pulled back
downward by neighboring sections that are already on the way down. The net
result is that a distortion in the string’s shape (a pulse, as in Fig. 16-1a) moves
along the string at some velocity .v:

Figure 16-1 (a) A single pulse is sent along 
a stretched string.A typical string element
(marked with a dot) moves up once and
then down as the pulse passes.The ele-
ment’s motion is perpendicular to the
wave’s direction of travel, so the pulse is a
transverse wave. (b) A sinusoidal wave is
sent along the string.A typical string 
element moves up and down continuously
as the wave passes.This too is a transverse
wave.
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halliday_c16_392-422v3.0.1.qxd  3/1/14  5:13 PM  Page 393



394 CHAPTER 16 WAVES—I

If you move your hand up and down in continuous simple harmonic motion, a
continuous wave travels along the string at velocity . Because the motion of your
hand is a sinusoidal function of time, the wave has a sinusoidal shape at any given in-
stant, as in Fig. 16-1b; that is, the wave has the shape of a sine curve or a cosine curve.

We consider here only an “ideal” string, in which no friction-like forces
within the string cause the wave to die out as it travels along the string. In
addition, we assume that the string is so long that we need not consider a wave
rebounding from the far end.

One way to study the waves of Fig. 16-1 is to monitor the wave forms (shapes of
the waves) as they move to the right. Alternatively, we could monitor the motion of
an element of the string as the element oscillates up and down while a wave passes
through it. We would find that the displacement of every such oscillating string ele-
ment is perpendicular to the direction of travel of the wave, as indicated in Fig. 16-1b.
This motion is said to be transverse, and the wave is said to be a transverse wave.

Longitudinal Waves. Figure 16-2 shows how a sound wave can be produced
by a piston in a long, air-filled pipe. If you suddenly move the piston rightward
and then leftward, you can send a pulse of sound along the pipe. The rightward
motion of the piston moves the elements of air next to it rightward, changing the
air pressure there. The increased air pressure then pushes rightward on the
elements of air somewhat farther along the pipe. Moving the piston leftward
reduces the air pressure next to it. As a result, first the elements nearest the
piston and then farther elements move leftward. Thus, the motion of the air and
the change in air pressure travel rightward along the pipe as a pulse.

If you push and pull on the piston in simple harmonic motion, as is being
done in Fig. 16-2, a sinusoidal wave travels along the pipe. Because the motion of
the elements of air is parallel to the direction of the wave’s travel, the motion
is said to be longitudinal, and the wave is said to be a longitudinal wave. In this
chapter we focus on transverse waves, and string waves in particular; in
Chapter 17 we focus on longitudinal waves, and sound waves in particular.

Both a transverse wave and a longitudinal wave are said to be traveling
waves because they both travel from one point to another, as from one end of the
string to the other end in Fig. 16-1 and from one end of the pipe to the other end
in Fig. 16-2. Note that it is the wave that moves from end to end, not the material
(string or air) through which the wave moves.

Wavelength and Frequency
To completely describe a wave on a string (and the motion of any element along
its length), we need a function that gives the shape of the wave. This means that
we need a relation in the form 

y � h(x, t), (16-1)

in which y is the transverse displacement of any string element as a function h of
the time t and the position x of the element along the string. In general, a sinu-
soidal shape like the wave in Fig. 16-1b can be described with h being either a sine
or cosine function; both give the same general shape for the wave. In this chapter
we use the sine function.

Sinusoidal Function. Imagine a sinusoidal wave like that of Fig. 16-1b traveling
in the positive direction of an x axis. As the wave sweeps through succeeding ele-
ments (that is, very short sections) of the string, the elements oscillate parallel to the y
axis.At time t, the displacement y of the element located at position x is given by

y(x, t) � ym sin(kx � vt). (16-2)

Because this equation is written in terms of position x, it can be used to find the
displacements of all the elements of the string as a function of time. Thus, it can
tell us the shape of the wave at any given time.

v:

Figure 16-2 A sound wave is set up in an air-
filled pipe by moving a piston back and
forth. Because the oscillations of an ele-
ment of the air (represented by the dot) are
parallel to the direction in which the wave
travels, the wave is a longitudinal wave.

Air v
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39516-1 TRANSVERSE WAVES

The names of the quantities in Eq. 16-2 are displayed in Fig. 16-3 and defined
next. Before we discuss them, however, let us examine Fig. 16-4, which shows five
“snapshots” of a sinusoidal wave traveling in the positive direction of an x axis.
The movement of the wave is indicated by the rightward progress of the short
arrow pointing to a high point of the wave. From snapshot to snapshot, the short
arrow moves to the right with the wave shape, but the string moves only parallel
to the y axis.To see that, let us follow the motion of the red-dyed string element at
x � 0. In the first snapshot (Fig. 16-4a), this element is at displacement y � 0.
In the next snapshot, it is at its extreme downward displacement because a valley
(or extreme low point) of the wave is passing through it. It then moves back up
through y � 0. In the fourth snapshot, it is at its extreme upward displacement
because a peak (or extreme high point) of the wave is passing through it. In the
fifth snapshot, it is again at y � 0, having completed one full oscillation.

Amplitude and Phase
The amplitude ym of a wave, such as that in Fig. 16-4 , is the magnitude of the
maximum displacement of the elements from their equilibrium positions as the
wave passes through them. (The subscript m stands for maximum.) Because ym is
a magnitude, it is always a positive quantity, even if it is measured downward
instead of upward as drawn in Fig. 16-4a.

The phase of the wave is the argument kx � vt of the sine in Eq. 16-2. As the
wave sweeps through a string element at a particular position x, the phase
changes linearly with time t. This means that the sine also changes, oscillating
between �1 and �1. Its extreme positive value (�1) corresponds to a peak of the
wave moving through the element; at that instant the value of y at position x is ym.
Its extreme negative value (�1) corresponds to a valley of the wave moving
through the element; at that instant the value of y at position x is �ym. Thus, the
sine function and the time-dependent phase of a wave correspond to the oscilla-
tion of a string element, and the amplitude of the wave determines the extremes
of the element’s displacement.

Caution: When evaluating the phase, rounding off the numbers before you
evaluate the sine function can throw of the calculation considerably.

Wavelength and Angular Wave Number
The wavelength l of a wave is the distance (parallel to the direction of the wave’s
travel) between repetitions of the shape of the wave (or wave shape). A typical
wavelength is marked in Fig. 16-4a, which is a snapshot of the wave at time t � 0.
At that time, Eq. 16-2 gives, for the description of the wave shape,

y(x, 0) � ym sin kx. (16-3)

By definition, the displacement y is the same at both ends of this wave-
length—that is, at x � x1 and x � x1 � l.Thus, by Eq. 16-3,

ym sin kx1 � ym sin k(x1 � l)

� ym sin(kx1 � kl). (16-4)

A sine function begins to repeat itself when its angle (or argument) is increased
by 2p rad, so in Eq. 16-4 we must have kl � 2p, or

(angular wave number). (16-5)

We call k the angular wave number of the wave; its SI unit is the radian per meter,
or the inverse meter. (Note that the symbol k here does not represent a spring
constant as previously.)

Notice that the wave in Fig. 16-4 moves to the right by l from one snapshot
to the next.Thus, by the fifth snapshot, it has moved to the right by 1l.

1
4

k �
2p

l

Figure 16-4 Five “snapshots” of a string wave
traveling in the positive direction of an
x axis.The amplitude ym is indicated.A
typical wavelength l, measured from an
arbitrary position x1, is also indicated.
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Watch this spot in this
series of snapshots.

Figure 16-3 The names of the quantities in
Eq. 16-2, for a transverse sinusoidal wave.
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396 CHAPTER 16 WAVES—I

Period, Angular Frequency, and Frequency
Figure 16-5 shows a graph of the displacement y of Eq. 16-2 versus time t at a
certain position along the string, taken to be x � 0. If you were to monitor the
string, you would see that the single element of the string at that position moves
up and down in simple harmonic motion given by Eq. 16-2 with x � 0:

y(0, t) � ym sin(�vt)

� �ym sin vt (x � 0). (16-6)

Here we have made use of the fact that sin(�a) � �sin a, where a is any angle.
Figure 16-5 is a graph of this equation, with displacement plotted versus time; it
does not show the shape of the wave. (Figure 16-4 shows the shape and is a
picture of reality; Fig. 16-5 is a graph and thus an abstraction.)

We define the period of oscillation T of a wave to be the time any string
element takes to move through one full oscillation.A typical period is marked on
the graph of Fig. 16-5. Applying Eq. 16-6 to both ends of this time interval and
equating the results yield

�ym sin vt1 � �ym sin v(t1 � T)

� �ym sin(vt1 � vT). (16-7)

This can be true only if vT � 2p, or if

(angular frequency). (16-8)

We call v the angular frequency of the wave; its SI unit is the radian per second.
Look back at the five snapshots of a traveling wave in Fig. 16-4. The time

between snapshots is T. Thus, by the fifth snapshot, every string element has
made one full oscillation.

The frequency f of a wave is defined as 1/T and is related to the angular
frequency v by

(frequency). (16-9)

Like the frequency of simple harmonic motion in Chapter 15, this frequency f is a
number of oscillations per unit time—here, the number made by a string element
as the wave moves through it. As in Chapter 15, f is usually measured in hertz or
its multiples, such as kilohertz.

f �
1
T

�
v

2p

1
4

v �
2p

T

Checkpoint 1
The figure is a composite of three snapshots, each of
a wave traveling along a particular string.The
phases for the waves are given by (a) 2x � 4t,
(b) 4x � 8t, and (c) 8x � 16t.Which phase
corresponds to which wave in the figure?

1 2 3

x 

y 

Figure 16-5 A graph of the displacement of
the string element at x � 0 as a function of
time, as the sinusoidal wave of Fig. 16-4
passes through the element.The amplitude
ym is indicated.A typical period T, mea-
sured from an arbitrary time t1, is also
indicated.

t 

y 

t1 
ym 

T 

This is a graph,
not a snapshot.

Phase Constant
When a sinusoidal traveling wave is given by the wave function of Eq. 16-2, the
wave near x � 0 looks like Fig. 16-6a when t � 0. Note that at x � 0, the displace-
ment is y � 0 and the slope is at its maximum positive value. We can generalize
Eq. 16-2 by inserting a phase constant f in the wave function:

y � ym sin(kx � vt � f). (16-10)

Figure 16-6 A sinusoidal traveling wave at 
t � 0 with a phase constant f of (a) 0 and
(b) p/5 rad.
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The effect of the
phase constant
is to shift the wave.

φ
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39716-1 TRANSVERSE WAVES

The value of f can be chosen so that the function gives some other displacement
and slope at x � 0 when t � 0. For example, a choice of f � �p/5 rad gives the
displacement and slope shown in Fig. 16-6b when t � 0. The wave is still
sinusoidal with the same values of ym, k, and v, but it is now shifted from what
you see in Fig. 16-6a (where f � 0). Note also the direction of the shift.A positive
value of f shifts the curve in the negative direction of the x axis; a negative value
shifts the curve in the positive direction.

The Speed of a Traveling Wave
Figure 16-7 shows two snapshots of the wave of Eq. 16-2, taken a small time
interval �t apart. The wave is traveling in the positive direction of x (to the right
in Fig. 16-7), the entire wave pattern moving a distance �x in that direction
during the interval �t. The ratio �x/�t (or, in the differential limit, dx/dt) is the
wave speed v. How can we find its value?

As the wave in Fig.16-7 moves,each point of the moving wave form,such as point
A marked on a peak,retains its displacement y. (Points on the string do not retain their
displacement, but points on the wave form do.) If point A retains its displacement as it
moves, the phase in Eq.16-2 giving it that displacement must remain a constant:

kx � vt � a constant. (16-11)

Note that although this argument is constant, both x and t are changing. In fact,
as t increases, x must also, to keep the argument constant. This confirms that the
wave pattern is moving in the positive direction of x.

To find the wave speed v, we take the derivative of Eq. 16-11, getting

or (16-12)

Using Eq. 16-5 (k � 2p/l) and Eq. 16-8 (v � 2p/T), we can rewrite the wave
speed as

(wave speed). (16-13)

The equation v � l/T tells us that the wave speed is one wavelength per period;
the wave moves a distance of one wavelength in one period of oscillation.

Equation 16-2 describes a wave moving in the positive direction of x. We can
find the equation of a wave traveling in the opposite direction by replacing t in
Eq. 16-2 with �t.This corresponds to the condition

kx � vt � a constant, (16-14)

which (compare Eq. 16-11) requires that x decrease with time. Thus, a wave trav-
eling in the negative direction of x is described by the equation

y(x, t) � ym sin(kx � vt). (16-15)

If you analyze the wave of Eq. 16-15 as we have just done for the wave of
Eq. 16-2, you will find for its velocity

(16-16)

The minus sign (compare Eq. 16-12) verifies that the wave is indeed moving in the
negative direction of x and justifies our switching the sign of the time variable.

dx
dt

� �
v

k
.

v �
v

k
�

l

T
� lf

dx
dt

� v �
v

k
.

k 
dx
dt

� v � 0

Figure 16-7 Two snapshots of the wave of 
Fig. 16-4, at time t � 0 and then at time
t � �t.As the wave moves to the right at
velocity , the entire curve shifts a distance
�x during �t. Point A “rides” with the wave
form, but the string elements move only up
and down.

v:

x 

y Δ x

A 

Wave at t = 0 
Wave at t = Δt 

v
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398 CHAPTER 16 WAVES—I

Consider now a wave of arbitrary shape, given by

y(x, t) � h(kx � vt), (16-17)

where h represents any function, the sine function being one possibility. Our
previous analysis shows that all waves in which the variables x and t enter
into the combination kx � vt are traveling waves. Furthermore, all traveling
waves must be of the form of Eq. 16-17. Thus, y(x, t) � represents a
possible (though perhaps physically a little bizarre) traveling wave. The function
y(x, t) � sin(ax2 � bt), on the other hand, does not represent a traveling wave.

1ax � bt

Checkpoint 2
Here are the equations of three waves:
(1) y(x, t) � 2 sin(4x � 2t), (2) y(x, t) � sin(3x � 4t), (3) y(x, t) � 2 sin(3x � 3t).
Rank the waves according to their (a) wave speed and (b) maximum speed perpendi-
cular to the wave’s direction of travel (the transverse speed), greatest first.

straction, showing us motion spread out over time. From it
we can determine the period T of the string element in its
SHM and thus also of the wave itself. From T we can then
find angular frequency v (� 2p/T) in Eq. 16-18. (3) The
phase constant f is set by the displacement of the string at
x � 0 and t � 0.

Amplitude: From either Fig. 16-8a or 16-8b we see that the
maximum displacement is 3.0 mm. Thus, the wave’s ampli-
tude xm � 3.0 mm.

Wavelength: In Fig. 16-8a, the wavelength l is the distance
along the x axis between repetitions in the pattern.The easi-
est way to measure l is to find the distance from one cross-
ing point to the next crossing point where the string has the
same slope. Visually we can roughly measure that distance
with the scale on the axis. Instead, we can lay the edge of a

Sample Problem 16.01 Determining the quantities in an equation for a transverse wave

A transverse wave traveling along an x axis has the form
given by

y � ym sin(kx � vt � f). (16-18)

Figure 16-8a gives the displacements of string elements as a
function of x, all at time t � 0. Figure 16-8b gives the
displacements of the element at x � 0 as a function of t. Find
the values of the quantities shown in Eq. 16-18, including the
correct choice of sign.

KEY IDEAS

(1) Figure 16-8a is effectively a snapshot of reality (some-
thing that we can see), showing us motion spread out over
the x axis. From it we can determine the wavelength l of the
wave along that axis, and then we can find the angular wave
number k (� 2p/l) in Eq. 16-18. (2) Figure 16-8b is an ab-

Figure 16-8 (a) A snapshot of the displacement y versus position x along a string, at time t � 0. (b) A graph of displacement y versus time
t for the string element at x � 0.
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39916-1 TRANSVERSE WAVES

crease (mentally slide the curve slightly rightward). If,
instead, the wave is moving leftward, then just after the snap-
shot, the depth at x � 0 should decrease. Now let’s check the
graph in Fig. 16-8b. It tells us that just after t � 0, the depth in-
creases.Thus, the wave is moving rightward, in the positive di-
rection of x, and we choose the minus sign in Eq. 16-18.

Phase constant: The value of f is set by the conditions at
x � 0 at the instant t � 0. From either figure we see that at
that location and time, y � �2.0 mm. Substituting these
three values and also ym � 3.0 mm into Eq. 16-18 gives us

�2.0 mm � (3.0 mm) sin(0 � 0 � f)

or f � sin�1 � �0.73 rad.

Note that this is consistent with the rule that on a plot of y
versus x, a negative phase constant shifts the normal sine
function rightward, which is what we see in Fig. 16-8a.

Equation: Now we can fill out Eq. 16-18:

y � (3.0 mm) sin(200px � l00pt � 0.73 rad), (Answer)

with x in meters and t in seconds.

(�2
3)

paper sheet on the graph, mark those crossing points, slide
the sheet to align the left-hand mark with the origin, and
then read off the location of the right-hand mark. Either
way we find l � 10 mm. From Eq. 16-5, we then have

Period: The period T is the time interval that a string ele-
ment’s SHM takes to begin repeating itself. In Fig. 16-8b, T
is the distance along the t axis from one crossing point to the
next crossing point where the plot has the same slope.
Measuring the distance visually or with the aid of a sheet of
paper, we find T � 20 ms. From Eq. 16-8, we then have

Direction of travel: To find the direction, we apply a bit of
reasoning to the figures. In the snapshot at t � 0 given in
Fig. 16-8a, note that if the wave is moving rightward, then just
after the snapshot, the depth of the wave at x � 0 should in-

v �
2p

T
�

2p

0.020 s
� 100p rad/s.

k �
2p

l
�

2p

0.010 m
� 200p rad/m.

Next, substituting numerical values but suppressing the
units, which are SI, we write

u � (�2.72)(0.00327) cos[(72.1)(0.225) � (2.72)(18.9)]

� 0.00720 m/s � 7.20 mm/s. (Answer)

Thus, at t � 18.9 s our string element is moving in the
positive direction of y with a speed of 7.20 mm/s.
(Caution: In evaluating the cosine function, we keep all the
significant figures in the argument or the calculation can be
off considerably. For example, round off the numbers to two
significant figures and then see what you get for u.)

(b) What is the transverse acceleration ay of our string
element at t � 18.9 s?

KEY IDEA

The transverse acceleration ay is the rate at which the ele-
ment’s transverse velocity is changing.

Calculations: From Eq. 16-20, again treating x as a constant
but allowing t to vary, we find

(16-21)

Substituting numerical values but suppressing the units,
which are SI, we have

ay 5 2(2.72)2(0.00327) sin[(72.1)(0.225) � (2.72)(18.9)]

� �0.0142 m/s2 � �14.2 mm/s2. (Answer)

ay �
�u
�t

� �v2ym sin (kx � vt).

Sample Problem 16.02 Transverse velocity and transverse acceleration of a string element

A wave traveling along a string is described by

y(x, t) = (0.00327 m) sin(72.1x � 2.72t),

in which the numerical constants are in SI units (72.1 rad/m
and 2.72 rad/s).

(a) What is the transverse velocity u of the string element
at x � 22.5 cm at time t � 18.9 s? (This velocity, which is
associated with the transverse oscillation of a string
element, is parallel to the y axis. Don’t confuse it with v,
the constant velocity at which the wave form moves along
the x axis.)

KEY IDEAS

The transverse velocity u is the rate at which the
displacement y of the element is changing. In general, that
displacement is given by

y(x, t) = ym sin(kx � vt). (16-19)

For an element at a certain location x, we find the rate of
change of y by taking the derivative of Eq. 16-19 with re-
spect to t while treating x as a constant. A derivative taken
while one (or more) of the variables is treated as a constant
is called a partial derivative and is represented by a symbol
such as rather than d/dt.

Calculations: Here we have

(16-20)u �
�y
�t

� �vym cos(kx � vt).

�/�t
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16-2 WAVE SPEED ON A STRETCHED STRING

After reading this module, you should be able to . . .

16.14 Calculate the linear density m of a uniform string in
terms of the total mass and total length.

l6.15 Apply the relationship between wave speed v, tension t,
and linear density m.

● The speed of a wave on a stretched string is set by
properties of the string, not properties of the wave such as
frequency or amplitude.

● The speed of a wave on a string with tension t and linear
density m is

v �
A

t

m
.

Learning Objectives

Key Ideas

Wave Speed on a Stretched String
The speed of a wave is related to the wave’s wavelength and frequency by Eq.
16-13, but it is set by the properties of the medium. If a wave is to travel through
a medium such as water, air, steel, or a stretched string, it must cause the particles
of that medium to oscillate as it passes, which requires both mass (for kinetic en-
ergy) and elasticity (for potential energy).Thus, the mass and elasticity determine
how fast the wave can travel. Here, we find that dependency in two ways.

Dimensional Analysis
In dimensional analysis we carefully examine the dimensions of all the physical
quantities that enter into a given situation to determine the quantities they pro-
duce. In this case, we examine mass and elasticity to find a speed v, which has the
dimension of length divided by time, or LT �1.

For the mass, we use the mass of a string element, which is the mass m of the
string divided by the length l of the string.We call this ratio the linear density m of
the string.Thus, m � m/l, its dimension being mass divided by length, ML�1.

You cannot send a wave along a string unless the string is under tension,
which means that it has been stretched and pulled taut by forces at its two ends.
The tension t in the string is equal to the common magnitude of those two forces.
As a wave travels along the string, it displaces elements of the string by causing
additional stretching, with adjacent sections of string pulling on each other
because of the tension. Thus, we can associate the tension in the string with the
stretching (elasticity) of the string. The tension and the stretching forces it pro-
duces have the dimension of a force—namely, MLT �2 (from F � ma).

We need to combine m (dimension ML�1) and t (dimension MLT �2) to get v
(dimension LT �1).A little juggling of various combinations suggests

(16-22)

in which C is a dimensionless constant that cannot be determined with dimen-
sional analysis. In our second approach to determining wave speed, you will see
that Eq. 16-22 is indeed correct and that C � 1.

v � C 
A

t

m
,

From part (a) we learn that at t � 18.9 s our string element is
moving in the positive direction of y, and here we learn that

it is slowing because its acceleration is in the opposite
direction of u.

Additional examples, video, and practice available at WileyPLUS
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40116-2 WAVE SPEED ON A STRETCHED STRING

Derivation from Newton’s Second Law
Instead of the sinusoidal wave of Fig. 16-1b, let us consider a single symmetrical
pulse such as that of Fig. 16-9, moving from left to right along a string with
speed v. For convenience, we choose a reference frame in which the pulse
remains stationary; that is, we run along with the pulse, keeping it constantly
in view. In this frame, the string appears to move past us, from right to left in
Fig. 16-9, with speed v.

Consider a small string element of length �l within the pulse, an element that
forms an arc of a circle of radius R and subtending an angle 2u at the center of
that circle. A force with a magnitude equal to the tension in the string pulls
tangentially on this element at each end. The horizontal components of these
forces cancel, but the vertical components add to form a radial restoring force .
In magnitude,

(force), (16-23)

where we have approximated sin u as u for the small angles u in Fig. 16-9. From
that figure, we have also used 2u � �l/R.The mass of the element is given by

�m � m �l (mass), (16-24)

where m is the string’s linear density.
At the moment shown in Fig. 16-9, the string element �l is moving in an arc of a

circle.Thus, it has a centripetal acceleration toward the center of that circle, given by

(acceleration). (16-25)

Equations 16-23, 16-24, and 16-25 contain the elements of Newton’s second
law. Combining them in the form

force � mass � acceleration

gives

Solving this equation for the speed v yields

(speed), (16-26)

in exact agreement with Eq. 16-22 if the constant C in that equation is given the
value unity. Equation 16-26 gives the speed of the pulse in Fig. 16-9 and the speed
of any other wave on the same string under the same tension.

Equation 16-26 tells us:

v �
A

t

m

t �l
R

� (m �l) 
v2

R
.

a �
v2

R

F � 2(t  sin u) � t(2u) � t 
�l
R

F
:

	:

Figure 16-9 A symmetrical pulse, viewed
from a reference frame in which the pulse
is stationary and the string appears to move
right to left with speed v.We find speed v
by applying Newton’s second law to a
string element of length �l, located at the
top of the pulse.

τ
θ

R

lΔ

O

τ

θ

v

The speed of a wave along a stretched ideal string depends only on the tension
and linear density of the string and not on the frequency of the wave.

Checkpoint 3
You send a traveling wave along a particular string by oscillating one end. If you
increase the frequency of the oscillations, do (a) the speed of the wave and (b) the
wavelength of the wave increase, decrease, or remain the same? If, instead, you
increase the tension in the string, do (c) the speed of the wave and (d) the wavelength
of the wave increase, decrease, or remain the same?

The frequency of the wave is fixed entirely by whatever generates the wave (for
example, the person in Fig. 16-1b). The wavelength of the wave is then fixed by
Eq. 16-13 in the form l � v/f.
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Energy and Power of a Wave Traveling Along a String
When we set up a wave on a stretched string, we provide energy for the motion of
the string. As the wave moves away from us, it transports that energy as both
kinetic energy and elastic potential energy. Let us consider each form in turn.

Kinetic Energy
A string element of mass dm, oscillating transversely in simple harmonic motion
as the wave passes through it, has kinetic energy associated with its transverse
velocity . When the element is rushing through its y � 0 position (element b in
Fig. 16-10), its transverse velocity—and thus its kinetic energy—is a maximum.
When the element is at its extreme position y � ym (as is element a), its trans-
verse velocity—and thus its kinetic energy—is zero.

Elastic Potential Energy
To send a sinusoidal wave along a previously straight string, the wave must neces-
sarily stretch the string.As a string element of length dx oscillates transversely, its
length must increase and decrease in a periodic way if the string element is to fit
the sinusoidal wave form. Elastic potential energy is associatzed with these
length changes, just as for a spring.

When the string element is at its y � ym position (element a in Fig. 16-10), its
length has its normal undisturbed value dx, so its elastic potential energy is zero.
However, when the element is rushing through its y � 0 position, it has maximum
stretch and thus maximum elastic potential energy.

Energy Transport
The oscillating string element thus has both its maximum kinetic energy and its
maximum elastic potential energy at y � 0. In the snapshot of Fig. 16-10, the
regions of the string at maximum displacement have no energy, and the regions at
zero displacement have maximum energy. As the wave travels along the string,
forces due to the tension in the string continuously do work to transfer energy
from regions with energy to regions with no energy.

As in Fig. 16-1b, let’s set up a wave on a string stretched along a horizontal x
axis such that Eq. 16-2 applies. As we oscillate one end of the string, we continu-
ously provide energy for the motion and stretching of the string—as the string
sections oscillate perpendicularly to the x axis, they have kinetic energy and elas-
tic potential energy.As the wave moves into sections that were previously at rest,
energy is transferred into those new sections. Thus, we say that the wave trans-
ports the energy along the string.

The Rate of Energy Transmission
The kinetic energy dK associated with a string element of mass dm is given by

dK � dm u2, (16-27)1
2

u:

16-3 ENERGY AND POWER OF A WAVE TRAVELING ALONG A STRING

After reading this module, you should be able to . . .

16.16 Calculate the average rate at which energy is transported by a transverse wave.

● The average power of, or average rate at which energy is
transmitted by, a sinusoidal wave on a stretched string is

Learning Objective

Key Idea

Figure 16-10 A snapshot of a traveling wave
on a string at time t � 0. String element a is
at displacement y � ym, and string element
b is at displacement y � 0.The kinetic en-
ergy of the string element at each position
depends on the transverse velocity of the
element.The potential energy depends on
the amount by which the string element is
stretched as the wave passes through it.

y 

ym 

0 

dx 

b 

dx 

a 
λ 

x 

v

given by
Pavg � 1

2mvv2y2
m.
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40316-3 ENERGY AND POWER OF A WAVE TRAVELING ALONG A STRING

where u is the transverse speed of the oscillating string element. To find u, we
differentiate Eq. 16-2 with respect to time while holding x constant:

(16-28)

Using this relation and putting dm � m dx, we rewrite Eq. 16-27 as

dK � (m dx)(�vym)2 cos2(kx � vt). (16-29)

Dividing Eq. 16-29 by dt gives the rate at which kinetic energy passes through
a string element, and thus the rate at which kinetic energy is carried along by the
wave.The dx/dt that then appears on the right of Eq. 16-29 is the wave speed v, so 

(16-30)

The average rate at which kinetic energy is transported is

� mvv2y2
m. (16-31)

Here we have taken the average over an integer number of wavelengths and
have used the fact that the average value of the square of a cosine function over
an integer number of periods is .

Elastic potential energy is also carried along with the wave, and at the same
average rate given by Eq. 16-31. Although we shall not examine the proof, you
should recall that, in an oscillating system such as a pendulum or a spring–block
system, the average kinetic energy and the average potential energy are equal.

The average power, which is the average rate at which energy of both kinds
is transmitted by the wave, is then

(16-32)

or, from Eq. 16-31,

Pavg � mvv2y2
m (average power). (16-33)

The factors m and v in this equation depend on the material and tension of the
string.The factors v and ym depend on the process that generates the wave.The de-
pendence of the average power of a wave on the square of its amplitude and also on
the square of its angular frequency is a general result, true for waves of all types.

1
2

Pavg � 2 � dK
dt �avg

1
2

1
4

� dK
dt �avg

� 1
2mvv2y2

m [cos2(kx � vt)]avg

dK
dt

� 1
2
v�2y2

m cos2(kx � �t).

1
2

u �
≠y
≠t

� �vym cos(kx � vt).

angular frequency v and wave speed v. From Eq. 16-9,
v � 2pf � (2p)(120 Hz) � 754 rad/s.

From Eq. 16-26 we have

Equation 16-33 then yields

Pavg � mvv2y2
m

� ( )(0.525 kg/m)(9.26 m/s)(754 rad/s)2(0.0085 m)2

� 100 W. (Answer)

1
2

1
2

v �
A

	



�

A

45 N
0.525 kg/m

� 9.26 m/s.

Sample Problem 16.03 Average power of a transverse wave

A string has linear density m � 525 g/m and is under tension 
t � 45 N.We send a sinusoidal wave with frequency f � 120 Hz
and amplitude ym � 8.5 mm along the string. At what average
rate does the wave transport energy?

KEY IDEA

The average rate of energy transport is the average power
Pavg as given by Eq. 16-33.

Calculations: To use Eq. 16-33, we first must calculate

Additional examples, video, and practice available at WileyPLUS
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The Wave Equation
As a wave passes through any element on a stretched string, the element moves
perpendicularly to the wave’s direction of travel (we are dealing with a trans-
verse wave). By applying Newton’s second law to the element’s motion, we can
derive a general differential equation, called the wave equation, that governs the
travel of waves of any type.

Figure 16-11a shows a snapshot of a string element of mass dm and length �
as a wave travels along a string of linear density m that is stretched along a hori-
zontal x axis. Let us assume that the wave amplitude is small so that the element
can be tilted only slightly from the x axis as the wave passes. The force 2 on the
right end of the element has a magnitude equal to tension t in the string and is
directed slightly upward. The force 1 on the left end of the element also has
a magnitude equal to the tension t but is directed slightly downward. Because of
the slight curvature of the element, these two forces are not simply in opposite di-
rection so that they cancel. Instead, they combine to produce a net force that
causes the element to have an upward acceleration ay. Newton’s second law writ-
ten for y components (Fnet,y � may) gives us

F2y � F1y � dm ay. (16-34)

Let’s analyze this equation in parts, first the mass dm, then the acceleration com-
ponent ay, then the individual force components F2y and F1y, and then finally the
net force that is on the left side of Eq. 16-34.

Mass. The element’s mass dm can be written in terms of the string’s linear
density m and the element’s length � as dm � m�. Because the element can have
only a slight tilt, � � dx (Fig. 16-11a) and we have the approximation

dm � m dx. (16-35)

F
:

F
:

404 CHAPTER 16 WAVES—I

16-4 THE WAVE EQUATION

After reading this module, you should be able to . . .
16.17 For the equation giving a string-element displacement

as a function of position x and time t, apply the relationship
between the second derivative with respect to x and the
second derivative with respect to t.

● The general differential equation that governs the travel of waves
of all types is

�2y
�x2 �

1 
v2

�2y
�t2 .

Here the waves travel along an x axis and oscillate parallel to
the y axis, and they move with speed v, in either the positive x
direction or the negative x direction.

Learning Objective

Key Idea

Figure 16-11 (a) A string element as a sinusoidal transverse wave travels on a stretched string.
Forces 1 and 2 act at the left and right ends, producing acceleration having a vertical
component ay. (b) The force at the element’s right end is directed along a tangent to the ele-
ment’s right side.

a:F
:

F
:

y 

x 
dx 

� 
F1 

F2 

ay 

(a)

y

x

F2

F2x

F2y

(b)

Tangent line
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40516-4 THE WAVE EQUATION

Acceleration. The acceleration ay in Eq. 16-34 is the second derivative of the
displacement y with respect to time:

(16-36)

Forces. Figure 16-11b shows that 2 is tangent to the string at the right end
of the string element.Thus we can relate the components of the force to the string
slope S2 at the right end as

(16-37)

We can also relate the components to the magnitude F2 (� t) with

or (16-38)

However, because we assume that the element is only slightly tilted, F2y � F2x and
therefore we can rewrite Eq. 16-38 as

t � F2x. (16-39)

Substituting this into Eq. 16-37 and solving for F2y yield

F2y � tS2. (16-40)

Similar analysis at the left end of the string element gives us

F1y � tS1. (16-41)

Net Force. We can now substitute Eqs. 16-35, 16-36, 16-40, and 16-41 into
Eq. 16-34 to write

or (16-42)

Because the string element is short, slopes S2 and S1 differ by only a differential
amount dS, where S is the slope at any point:

(16-43)

First replacing S2 � S1 in Eq. 16-42 with dS and then using Eq. 16-43 to substitute
dy/dx for S, we find

and . (16-44)

In the last step, we switched to the notation of partial derivatives because on
the left we differentiate only with respect to x and on the right we differenti-
ate only with respect to t. Finally, substituting from Eq. 16-26 (v � ), we
find

(wave equation). (16-45)

This is the general differential equation that governs the travel of waves of all
types.

≠2y
≠x2 �

1
v2

≠2y
≠t2

1t /m

≠2y
≠x2 �

m

t

≠2y
≠t2

d(dy/dx)
dx

�
m

t

d2y
dt2 ,

dS
dx

�
m

t

d2y
dt2 ,

S �
dy
dx

.

S2 � S1

dx
�

m

t

d2y
dt2 .

tS2 � tS1 � (m dx) 
d2y
dt2 ,

t � 2F 2
2x � F 2

2y.

F2 � 2F 2
2x � F 2

2y

F2y

F2x
� S2.

F
:

ay �
d2y
dt2 .
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The Principle of Superposition for Waves
It often happens that two or more waves pass simultaneously through the same
region. When we listen to a concert, for example, sound waves from many instru-
ments fall simultaneously on our eardrums. The electrons in the antennas of our
radio and television receivers are set in motion by the net effect of many electro-
magnetic waves from many different broadcasting centers. The water of a lake or
harbor may be churned up by waves in the wakes of many boats.

Suppose that two waves travel simultaneously along the same stretched
string. Let y1(x, t) and y2(x, t) be the displacements that the string would 
experience if each wave traveled alone. The displacement of the string when the
waves overlap is then the algebraic sum

y(x, t) � y1(x, t) � y2(x, t). (16-46)

This summation of displacements along the string means that

This is another example of the principle of superposition, which says that when
several effects occur simultaneously, their net effect is the sum of the individual
effects. (We should be thankful that only a simple sum is needed. If two effects
somehow amplified each other, the resulting nonlinear world would be very diffi-
cult to manage and understand.)

Figure 16-12 shows a sequence of snapshots of two pulses traveling in
opposite directions on the same stretched string. When the pulses overlap, the
resultant pulse is their sum. Moreover,

Overlapping waves algebraically add to produce a resultant wave (or net wave).

Overlapping waves do not in any way alter the travel of each other.

Figure 16-12 A series of snapshots that
show two pulses traveling in opposite
directions along a stretched string. The
superposition principle applies as the
pulses move through each other.

When two waves overlap,
we see the resultant wave,
not the individual waves.

● When two or more waves traverse the same medium, the
displacement of any particle of the medium is the sum of the
displacements that the individual waves would give it, an
effect known as the principle of superposition for waves.

● Two sinusoidal waves on the same string exhibit
interference, adding or canceling according to the
principle of superposition. If the two are traveling in the
same direction and have the same amplitude ym and

frequency (hence the same wavelength) but differ in phase by
a phase constant f, the result is a single wave with this same
frequency:

y(x, t) � [2ym cos f] sin(kx � vt � f).

If f � 0, the waves are exactly in phase and their interference
is fully constructive; if f � p rad, they are exactly out of phase
and their interference is fully destructive.

1
2

1
2

Key Ideas

16-5 INTERFERENCE OF WAVES

After reading this module, you should be able to . . .

16.18 Apply the principle of superposition to show that two
overlapping waves add algebraically to give a resultant
(or net) wave.

16.19 For two transverse waves with the same amplitude and
wavelength and that travel together, find the displacement equa-
tion for the resultant wave and calculate the amplitude in terms
of the individual wave amplitude and the phase difference.

16.20 Describe how the phase difference between two
transverse waves (with the same amplitude and wavelength)
can result in fully constructive interference, fully destructive in-
terference, and intermediate interference.

16.21 With the phase difference between two interfering
waves expressed in terms of wavelengths, quickly
determine the type of interference the waves have.

Learning Objectives
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Interference of Waves
Suppose we send two sinusoidal waves of the same wavelength and amplitude in
the same direction along a stretched string. The superposition principle applies.
What resultant wave does it predict for the string?

The resultant wave depends on the extent to which the waves are in phase
(in step) with respect to each other — that is, how much one wave form is
shifted from the other wave form. If the waves are exactly in phase (so that the
peaks and valleys of one are exactly aligned with those of the other), they com-
bine to double the displacement of either wave acting alone. If they are exactly
out of phase (the peaks of one are exactly aligned with the valleys of the other),
they combine to cancel everywhere, and the string remains straight. We call this
phenomenon of combining waves interference, and the waves are said to
interfere. (These terms refer only to the wave displacements; the travel of the
waves is unaffected.)

Let one wave traveling along a stretched string be given by

y1(x, t) � ym sin(kx � vt) (16-47)

and another, shifted from the first, by

y2(x, t) � ym sin(kx � vt � f). (16-48)

These waves have the same angular frequency v (and thus the same frequency
f ), the same angular wave number k (and thus the same wavelength l), and the
same amplitude ym. They both travel in the positive direction of the x axis, with
the same speed, given by Eq. 16-26. They differ only by a constant angle f, the
phase constant. These waves are said to be out of phase by f or to have a phase
difference of f, or one wave is said to be phase-shifted from the other by f.

From the principle of superposition (Eq. 16-46), the resultant wave is the
algebraic sum of the two interfering waves and has displacement

y(x, t) � y1(x, t) � y2(x, t)

� ym sin(kx � vt) � ym sin(kx � vt � f). (16-49)

In Appendix E we see that we can write the sum of the sines of two angles a and b as

sin a � sin b � 2 sin (a � b) cos (a � b). (16-50)

Applying this relation to Eq. 16-49 leads to

y(x, t) � [2ym cos f] sin(kx � vt � f). (16-51)

As Fig. 16-13 shows, the resultant wave is also a sinusoidal wave traveling in the
direction of increasing x. It is the only wave you would actually see on the string
(you would not see the two interfering waves of Eqs. 16-47 and 16-48).

1
2

1
2

1
2

1
2

If two sinusoidal waves of the same amplitude and wavelength travel in the same
direction along a stretched string, they interfere to produce a resultant sinusoidal
wave traveling in that direction.

Figure 16-13 The resultant wave of 
Eq. 16-51, due to the interference of two
sinusoidal transverse waves, is also a
sinusoidal transverse wave, with an
amplitude and an oscillating term.

Displacement 

Magnitude 
gives 

amplitude 

y'(x,t) = [2ym cos      ] sin(kx –    t +      )φ ω φ 

Oscillating 
term 

1 __
 2 

1 __
 2 

The resultant wave differs from the interfering waves in two respects: (1) its phase
constant is f, and (2) its amplitude ym is the magnitude of the quantity in the brack-
ets in Eq. 16-51:

ym � |2ym cos f| (amplitude). (16-52)

If f � 0 rad (or 0�), the two interfering waves are exactly in phase and Eq.
16-51 reduces to

y(x, t) � 2ym sin(kx � vt) (f � 0). (16-53)

1
2

1
2
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x 

y 

 = 0 

y1(x, t) 
and 

y2(x, t) 

φ 

(a) 

x 

y 

 =    rad 

y1(x, t) y2(x, t)

φ π 

(b) 

x 

y 

 =       rad 

y1(x, t) y2(x, t) 

φ π 

(c) 

2 __
 3 

x 

y 

y'(x, t) 

(d) 

x 

y 

y'(x, t) 

(e) 

x 

y 

y'(x, t) 

( f ) 

Being exactly in phase,
the waves produce a
large resultant wave.

Being exactly out of
phase, they produce
a flat string.

This is an intermediate
situation, with an
intermediate result.

Figure 16-14 Two identical sinusoidal waves,
y1(x, t) and y2(x, t), travel along a string in
the positive direction of an x axis.They in-
terfere to give a resultant wave y(x, t).
The resultant wave is what is actually
seen on the string.The phase difference f
between the two interfering waves is (a) 0
rad or 0�, (b) p rad or 180�, and (c) p rad
or 120�.The corresponding result-
ant waves are shown in (d), (e), and ( f ).

2
3

The two waves are shown in Fig. 16-14a, and the resultant wave is plotted in Fig.
16-14d. Note from both that plot and Eq. 16-53 that the amplitude of the resultant
wave is twice the amplitude of either interfering wave. That is the greatest ampli-
tude the resultant wave can have, because the cosine term in Eqs. 16-51 and 16-52
has its greatest value (unity) when f � 0. Interference that produces the greatest
possible amplitude is called fully constructive interference.

If f � p rad (or 180�), the interfering waves are exactly out of phase as in Fig.
16-14b.Then cos f becomes cos p/2 � 0, and the amplitude of the resultant wave
as given by Eq. 16-52 is zero.We then have, for all values of x and t,

y(x, t) � 0 (f � p rad). (16-54)

The resultant wave is plotted in Fig. 16-14e. Although we sent two waves along
the string, we see no motion of the string. This type of interference is called fully
destructive interference.

Because a sinusoidal wave repeats its shape every 2p rad, a phase difference
of f � 2p rad (or 360�) corresponds to a shift of one wave relative to the other
wave by a distance equivalent to one wavelength. Thus, phase differences can be
described in terms of wavelengths as well as angles. For example, in Fig. 16-14b
the waves may be said to be 0.50 wavelength out of phase.Table 16-1 shows some
other examples of phase differences and the interference they produce. Note that
when interference is neither fully constructive nor fully destructive, it is called
intermediate interference. The amplitude of the resultant wave is then interme-
diate between 0 and 2ym. For example, from Table 16-1, if the interfering waves
have a phase difference of 120� (f � p rad � 0.33 wavelength), then the result-
ant wave has an amplitude of ym, the same as that of the interfering waves
(see Figs. 16-14c and f ).

Two waves with the same wavelength are in phase if their phase
difference is zero or any integer number of wavelengths.Thus, the integer part of
any phase difference expressed in wavelengths may be discarded. For example, a
phase difference of 0.40 wavelength (an intermediate interference, close to fully
destructive interference) is equivalent in every way to one of 2.40 wavelengths,

2
3

1
2
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and so the simpler of the two numbers can be used in computations. Thus, by
looking at only the decimal number and comparing it to 0, 0.5, or 1.0 wavelength,
you can quickly tell what type of interference two waves have.

16-5 INTERFERENCE OF WAVES

Checkpoint 4
Here are four possible phase differences between two identical waves, expressed in
wavelengths: 0.20, 0.45, 0.60, and 0.80. Rank them according to the amplitude of the 
resultant wave, greatest first.

Table 16-1 Phase Difference and Resulting Interference Typesa

AmplitudePhase Difference, in
of Resultant Type of 

Degrees Radians Wavelengths Wave Interference

0 0 0 2ym Fully constructive

120 p 0.33 ym Intermediate

180 p 0.50 0 Fully destructive

240 p 0.67 ym Intermediate

360 2p 1.00 2ym Fully constructive

865 15.1 2.40 0.60ym Intermediate

aThe phase difference is between two otherwise identical waves, with amplitude ym, moving in the
same direction.

4
3

2
3

(b) What phase difference, in radians and wavelengths, will
give the resultant wave an amplitude of 4.9 mm?

Calculations: Now we are given ym and seek f. From Eq.
16-52,

ym � |2ym cos f|,

we now have

4.9 mm � (2)(9.8 mm) cos f,

which gives us (with a calculator in the radian mode)

� �2.636 rad � �2.6 rad. (Answer)

There are two solutions because we can obtain the same re-
sultant wave by letting the first wave lead (travel ahead of)
or lag (travel behind) the second wave by 2.6 rad. In wave-
lengths, the phase difference is

� �0.42 wavelength. (Answer)

f

2p rad/wavelength
�

�2.636 rad
2p rad/wavelength

f � 2 cos�1 
4.9 mm

(2)(9.8 mm)

1
2

1
2

Sample Problem 16.04 Interference of two waves, same direction, same amplitude

Two identical sinusoidal waves, moving in the same 
direction along a stretched string, interfere with each other.
The amplitude ym of each wave is 9.8 mm, and the phase
difference f between them is 100�.

(a) What is the amplitude ym of the resultant wave due to the
interference, and what is the type of this interference?

KEY IDEA

These are identical sinusoidal waves traveling in the same
direction along a string, so they interfere to produce a
sinusoidal traveling wave.

Calculations: Because they are identical, the waves  have
the same amplitude. Thus, the amplitude ym of the resultant
wave is given by Eq. 16-52:

ym � |2ym cos f| � |(2)(9.8 mm) cos(100�/2)|

� 13 mm. (Answer)

We can tell that the interference is intermediate in two ways.
The phase difference is between 0 and 180�, and, correspond-
ingly, the amplitude ym is between 0 and 2ym (� 19.6 mm).

1
2

Additional examples, video, and practice available at WileyPLUS
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410 CHAPTER 16 WAVES—I

Phasors
Adding two waves as discussed in the preceding module is strictly limited to
waves with identical amplitudes. If we have such waves, that technique is easy
enough to use, but we need a more general technique that can be applied to any
waves, whether or not they have the same amplitudes. One neat way is to use
phasors to represent the waves. Although this may seem bizarre at first, it is es-
sentially a graphical technique that uses the vector addition rules of Chapter 3 in-
stead of messy trig additions.

A phasor is a vector that rotates around its tail, which is pivoted at the origin
of a coordinate system. The magnitude of the vector is equal to the amplitude ym

of the wave that it represents.The angular speed of the rotation is equal to the an-
gular frequency v of the wave. For example, the wave

y1(x, t) � ym1 sin(kx � vt) (16-55)

is represented by the phasor shown in Figs. 16-15a to d. The magnitude of the 
phasor is the amplitude ym1 of the wave. As the phasor rotates around the origin
at angular speed v, its projection y1 on the vertical axis varies sinusoidally, from a
maximum of ym1 through zero to a minimum of �ym1 and then back to ym1. This
variation corresponds to the sinusoidal variation in the displacement y1 of any
point along the string as the wave passes through that point. (All this is shown as
an animation with voiceover in WileyPLUS.)

When two waves travel along the same string in the same direction, we can
represent them and their resultant wave in a phasor diagram. The phasors in
Fig. 16-15e represent the wave of Eq. 16-55 and a second wave given by

y2(x, t) � ym2 sin(kx � vt � f). (16-56)

This second wave is phase-shifted from the first wave by phase constant f.
Because the phasors rotate at the same angular speed v, the angle between the
two phasors is always f. If f is a positive quantity, then the phasor for wave 2 lags
the phasor for wave 1 as they rotate, as drawn in Fig. 16-15e. If f is a negative
quantity, then the phasor for wave 2 leads the phasor for wave 1.

Because waves y1 and y2 have the same angular wave number k and angu-
lar frequency v, we know from Eqs. 16-51 and 16-52 that their resultant is of
the form

y(x, t) � ym sin(kx � vt � b), (16-57)

16-6 PHASORS

After reading this module, you should be able to . . .

16.22 Using sketches, explain how a phasor can represent
the oscillations of a string element as a wave travels
through its location.

16.23 Sketch a phasor diagram for two overlapping waves
traveling together on a string, indicating their amplitudes
and phase difference on the sketch.

16.24 By using phasors, find the resultant wave of two trans-
verse waves traveling together along a string, calculating
the amplitude and phase and writing out the displacement
equation, and then displaying all three phasors in a phasor
diagram that shows the amplitudes, the leading or lagging,
and the relative phases.

● A wave y(x, t) can be represented with a phasor. This is a
vector that has a magnitude equal to the amplitude ym of the
wave and that rotates about an origin with an angular speed

equal to the angular frequency v of the wave. The projection
of the rotating phasor on a vertical axis gives the displace-
ment y of a point along the wave’s travel.

Learning Objectives

Key Idea
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41116-6 PHASORS

Figure 16-15 (a)–(d) A phasor of magnitude ym1 rotating about an origin at angular speed v represents a sinusoidal wave.The phasor’s
projection y1 on the vertical axis represents the displacement of a point through which the wave passes. (e) A second phasor, also of
angular speed v but of magnitude ym2 and rotating at a constant angle f from the first phasor, represents a second wave, with a phase
constant f. (f ) The resultant wave is represented by the vector sum ym of the two phasors.

φ
φ

y1

y

x
ym1

ω

ω

ω

y1 ym1

y2
ym2

y1 ym1

y2
y'

ym2

y'm

β

(a)

(e) ( f )

y1 = 0

y

x

ω

(b)

y1 = ym1y1

x

y

ω

(c)

ym1 y1

x

y

ω

(d)

Zero projection, 
zero displacement

Maximum negative projection The next crest is about to
move through the dot.

This is a snapshot of the
two phasors for two waves.

These are the
projections of
the two phasors.

Wave 1

This is the
projection of
the resultant
phasor.

Adding the two phasors as vectors
gives the resultant phasor of the
resultant wave.

Wave 2, delayed
by    radiansφ

This projection matches this
displacement of the dot as
the wave moves through it.

A
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412 CHAPTER 16 WAVES—I

where ym is the amplitude of the resultant wave and b is its phase constant. To
find the values of ym and b, we would have to sum the two combining waves, as
we did to obtain Eq. 16-51.To do this on a phasor diagram, we vectorially add the
two phasors at any instant during their rotation, as in Fig. 16-15f where phasor ym2

has been shifted to the head of phasor ym1. The magnitude of the vector sum
equals the amplitude ym in Eq. 16-57. The angle between the vector sum and the
phasor for y1 equals the phase constant b in Eq. 16-57.

Note that, in contrast to the method of Module 16-5:

We can use phasors to combine waves even if their amplitudes are different.

we shall sum them by components. (They are called hori-
zontal and vertical components, because the symbols x and
y are already used for the waves themselves.) For the hori-
zontal components we have

ymh � ym1 cos 0 � ym2 cos p/3

� 4.0 mm � (3.0 mm) cos p/3 � 5.50 mm.

For the vertical components we have

ymv � ym1 sin 0 � ym2 sin p/3

� 0 � (3.0 mm) sin p/3 � 2.60 mm.

Thus, the resultant wave has an amplitude of

� 6.1 mm (Answer)
and a phase constant of

(Answer)

From Fig. 16-16b, phase constant b is a positive angle rela-
tive to phasor 1.Thus, the resultant wave lags wave 1 in their
travel by phase constant b � �0.44 rad. From Eq. 16-57, we
can write the resultant wave as

y(x, t) � (6.1 mm) sin(kx � vt � 0.44 rad). (Answer)

b � tan�1 
2.60 mm
5.50 mm

� 0.44 rad.

ym � 2(5.50 mm)2 � (2.60 mm)2

Sample Problem 16.05 Interference of two waves, same direction, phasors, any amplitudes

Two sinusoidal waves y1(x, t) and y2(x, t) have the same
wavelength and travel together in the same direction along
a string. Their amplitudes are ym1 � 4.0 mm and ym2 � 3.0
mm, and their phase constants are 0 and p/3 rad, respec-
tively. What are the amplitude ym and phase constant b of
the resultant wave? Write the resultant wave in the form of
Eq. 16-57.

KEY IDEAS

(1) The two waves have a number of properties in com-
mon: Because they travel along the same string, they must
have the same speed v, as set by the tension and linear
density of the string according to Eq. 16-26. With the
same wavelength l, they have the same angular wave
number k (� 2p/l). Also, because they have the same
wave number k and speed v, they must have the same an-
gular frequency v (� kv).

(2) The waves (call them waves 1 and 2) can be repre-
sented by phasors rotating at the same angular speed v
about an origin. Because the phase constant for wave 2 is
greater than that for wave 1 by p/3, phasor 2 must lag pha-
sor 1 by p/3 rad in their clockwise rotation, as shown in
Fig. 16-16a. The resultant wave due to the interference of
waves 1 and 2 can then be represented by a phasor that is
the vector sum of phasors 1 and 2.

Calculations: To simplify the vector summation, we drew
phasors 1 and 2 in Fig. 16-16a at the instant when phasor 1
lies along the horizontal axis. We then drew lagging
phasor 2 at positive angle p/3 rad. In Fig. 16-16b
we shifted phasor 2 so its tail is at the head of phasor 1.
Then we can draw the phasor ym of the resultant
wave from the tail of phasor 1 to the head of phasor 2.
The phase constant b is the angle phasor ym makes with
phasor 1.

To find values for ym and b, we can sum phasors 1 and
2 as vectors on a vector-capable calculator. However, here

Figure 16-16 (a) Two phasors of magnitudes ym1 and ym2 and with
phase difference p/3. (b) Vector addition of these phasors at any
instant during their rotation gives the magnitude ym of the phasor
for the resultant wave.

π /3 

ym2 

ym1 

β π 

ym2 

/3 

ym1 

y'm 
y' 

(a) (b) 

Add the phasors
as vectors.

Additional examples, video, and practice available at WileyPLUS
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16-7 STANDING WAVES AND RESONANCE

After reading this module, you should be able to . . .
16.25 For two overlapping waves (same amplitude and

wavelength) that are traveling in opposite directions,
sketch snapshots of the resultant wave, indicating nodes
and antinodes.

16.26 For two overlapping waves (same amplitude and
wavelength) that are traveling in opposite directions, find
the displacement equation for the resultant wave and
calculate the amplitude in terms of the individual wave
amplitude.

16.27 Describe the SHM of a string element at an antinode
of a standing wave.

16.28 For a string element at an antinode of a standing wave,
write equations for the displacement, transverse velocity,
and transverse acceleration as functions of time.

16.29 Distinguish between “hard” and “soft” reflections of
string waves at a boundary.

16.30 Describe resonance on a string tied taut between two
supports, and sketch the first several standing wave
patterns, indicating nodes and antinodes.

16.31 In terms of string length, determine the wavelengths re-
quired for the first several harmonics on a string under tension.

16.32 For any given harmonic, apply the relationship between
frequency, wave speed, and string length.

● The interference of two identical sinusoidal waves moving
in opposite directions produces standing waves. For a string
with fixed ends, the standing wave is given by

y(x, t) � [2ym sin kx] cos vt.

Standing waves are characterized by fixed locations of zero
displacement called nodes and fixed locations of maximum
displacement called antinodes.

● Standing waves on a string can be set up by reflection of
traveling waves from the ends of the string. If an end is fixed, it
must be the position of a node. This limits the frequencies at

which standing waves will occur on a given string. Each
possible frequency is a resonant frequency, and the
corresponding standing wave pattern is an oscillation mode.
For a stretched string of length L with fixed ends, the
resonant frequencies are

for n � 1, 2, 3, . . . .

The oscillation mode corresponding to n � 1 is called the
fundamental mode or the first harmonic; the mode
corresponding to n � 2 is the second harmonic; and so on.

f �
v
l

� n 
v

2L
,

Learning Objectives

Key Ideas

Standing Waves
In Module 16-5, we discussed two sinusoidal waves of the same wavelength and
amplitude traveling in the same direction along a stretched string. What if they
travel in opposite directions? We can again find the resultant wave by applying
the superposition principle.

Figure 16-17 suggests the situation graphically. It shows the two combin-
ing waves, one traveling to the left in Fig. 16-17a, the other to the right in
Fig. 16-17b. Figure 16-17c shows their sum, obtained by applying the superposition

Figure 16-17 (a) Five snapshots of a wave
traveling to the left,at the times t
indicated below part (c) (T is the period
of oscillation). (b) Five snapshots of a
wave identical to that in (a) but traveling
to the right,at the same times t. (c)
Corresponding snapshots for the
superposition of the two waves on the
same string.At t � 0, T, and T, fully
constructive interference occurs because
of the alignment of peaks with peaks and
valleys with valleys.At t T and T,
fully destructive interference occurs
because of the alignment of peaks with
valleys.Some points (the nodes,marked
with dots) never oscillate; some points
(the antinodes) oscillate the most.

3
4� 1

4

1
2

(a) 

(b) 

(c) 

t  = 0 t  =    T t  = T1
2 t  =    T3

4t  =    T1
4

x x x x x

As the waves move through each other,
some points never move and some move
the most.
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414 CHAPTER 16 WAVES—I

principle graphically.The outstanding feature of the resultant wave is that there are
places along the string, called nodes, where the string never moves. Four such nodes
are marked by dots in Fig. 16-17c. Halfway between adjacent nodes are antinodes,
where the amplitude of the resultant wave is a maximum. Wave patterns such as
that of Fig. 16-17c are called standing waves because the wave patterns do not
move left or right; the locations of the maxima and minima do not change.

If two sinusoidal waves of the same amplitude and wavelength travel in opposite
directions along a stretched string, their interference with each other produces a 
standing wave.

Figure 16-18 The resultant wave of Eq. 16-60
is a standing wave and is due to the
interference of two sinusoidal waves of the
same amplitude and wavelength that travel
in opposite directions.

Displacement 

Magnitude 
gives 

amplitude 
at position x 

y'(x,t) = [2ym  sin kx]cos    tω 

Oscillating 
term 

To analyze a standing wave, we represent the two waves with the equations

y1(x, t) � ym sin(kx � vt) (16-58)

and y2(x, t) � ym sin(kx � vt). (16-59)

The principle of superposition gives, for the combined wave,

y(x, t) � y1(x, t) � y2(x, t) � ym sin(kx � vt) � ym sin(kx � vt).

Applying the trigonometric relation of Eq. 16-50 leads to Fig. 16-18 and

y(x, t) � [2ym sin kx] cos vt. (16-60)

This equation does not describe a traveling wave because it is not of the form of
Eq. 16-17. Instead, it describes a standing wave.

The quantity 2ym sin kx in the brackets of Eq. 16-60 can be viewed as the
amplitude of oscillation of the string element that is located at position x.
However, since an amplitude is always positive and sin kx can be negative, we
take the absolute value of the quantity 2ym sin kx to be the amplitude at x.

In a traveling sinusoidal wave, the amplitude of the wave is the same for all
string elements.That is not true for a standing wave, in which the amplitude varies
with position. In the standing wave of Eq. 16-60, for example, the amplitude is
zero for values of kx that give sin kx � 0.Those values are

kx � np, for n � 0, 1, 2, . . . . (16-61)

Substituting k � 2p/l in this equation and rearranging, we get

for n � 0, 1, 2, . . . (nodes), (16-62)

as the positions of zero amplitude—the nodes—for the standing wave of
Eq. 16-60. Note that adjacent nodes are separated by l/2, half a wavelength.

The amplitude of the standing wave of Eq. 16-60 has a maximum value of
2ym, which occurs for values of kx that give | sin kx | � 1.Those values are

, . . .

for n � 0, 1, 2, . . . . (16-63)

Substituting k � 2p/l in Eq. 16-63 and rearranging, we get

for n � 0, 1, 2, . . . (antinodes), (16-64)

as the positions of maximum amplitude—the antinodes—of the standing wave
of Eq. 16-60.Antinodes are separated by l/2 and are halfway between nodes.

Reflections at a Boundary
We can set up a standing wave in a stretched string by allowing a traveling wave
to be reflected from the far end of the string so that the wave travels back

x � �n �
1
2 �

l

2
,

� (n � 1
2)p,

kx � 1
2p, 32p, 52p

x � n 
l

2
,
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41516-7 STANDING WAVES AND RESONANCE

through itself. The incident (original) wave and the reflected wave can then be
described by Eqs. 16-58 and 16-59, respectively, and they can combine to form a
pattern of standing waves.

In Fig. 16-19, we use a single pulse to show how such reflections take place. In
Fig. 16-19a, the string is fixed at its left end.When the pulse arrives at that end, it ex-
erts an upward force on the support (the wall). By Newton’s third law, the support
exerts an opposite force of equal magnitude on the string.This second force gener-
ates a pulse at the support, which travels back along the string in the direction op-
posite that of the incident pulse. In a “hard” reflection of this kind, there must be a
node at the support because the string is fixed there. The reflected and incident
pulses must have opposite signs, so as to cancel each other at that point.

In Fig. 16-19b, the left end of the string is fastened to a light ring that is free to
slide without friction along a rod.When the incident pulse arrives, the ring moves
up the rod. As the ring moves, it pulls on the string, stretching the string and
producing a reflected pulse with the same sign and amplitude as the incident
pulse. Thus, in such a “soft” reflection, the incident and reflected pulses rein-
force each other, creating an antinode at the end of the string; the maximum
displacement of the ring is twice the amplitude of either of these two pulses.

Figuer 16-19 (a) A pulse incident from the
right is reflected at the left end of the
string, which is tied to a wall. Note that the
reflected pulse is inverted from the incident
pulse. (b) Here the left end of the string is
tied to a ring that can slide without friction
up and down the rod. Now the pulse is not
inverted by the reflection.

(a) (b) 

There are two ways a
pulse can reflect from
the end of a string.

Checkpoint 5
Two waves with the same amplitude and wavelength interfere in three different
situations to produce resultant waves with the following equations:

(1) y(x, t) � 4 sin(5x � 4t)

(2) y(x, t) � 4 sin(5x) cos(4t)

(3) y(x, t) � 4 sin(5x � 4t)

In which situation are the two combining waves traveling (a) toward positive x,
(b) toward negative x, and (c) in opposite directions?

Standing Waves and Resonance
Consider a string, such as a guitar string, that is stretched between two clamps.
Suppose we send a continuous sinusoidal wave of a certain frequency along the
string, say, toward the right. When the wave reaches the right end, it reflects and
begins to travel back to the left. That left-going wave then overlaps the wave that
is still traveling to the right. When the left-going wave reaches the left end, it
reflects again and the newly reflected wave begins to travel to the right, over-
lapping the left-going and right-going waves. In short, we very soon have many
overlapping traveling waves, which interfere with one another.

For certain frequencies, the interference produces a standing wave pattern
(or oscillation mode) with nodes and large antinodes like those in Fig. 16-20.
Such a standing wave is said to be produced at resonance, and the string is said
to resonate at these certain frequencies, called resonant frequencies. If the string

Figure 16-20 Stroboscopic photographs reveal (imperfect) standing wave patterns on a 
string being made to oscillate by an oscillator at the left end.The patterns occur at certain
frequencies of oscillation.

Richard Megna/Fundamental Photographs
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Figure 16-22 One of many possible standing
wave patterns for a kettledrum head, made
visible by dark powder sprinkled on the
drumhead.As the head is set into oscilla-
tion at a single frequency by a mechanical
oscillator at the upper left of the photo-
graph, the powder collects at the nodes,
which are circles and straight lines in this
two-dimensional example.

Checkpoint 6
In the following series of resonant frequencies, one frequency (lower than 400 Hz)
is missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency? (b) What is the
frequency of the seventh harmonic?

416 CHAPTER 16 WAVES—I

Figure 16-21 A string, stretched between two
clamps, is made to oscillate in standing
wave patterns. (a) The simplest possible
pattern consists of one loop, which refers to
the composite shape formed by the string
in its extreme displacements (the solid and
dashed lines). (b) The next simplest pattern
has two loops. (c) The next has three loops.

L

L = λ
2

(a)

First harmonic

L = λ
2

(b)
2λ = 

Second harmonic

L = λ
2

(c)
3

Third harmonic

is oscillated at some frequency other than a resonant frequency, a standing wave
is not set up. Then the interference of the right-going and left-going traveling
waves results in only small, temporary (perhaps even imperceptible) oscillations
of the string.

Let a string be stretched between two clamps separated by a fixed
distance L. To find expressions for the resonant frequencies of the string, we
note that a node must exist at each of its ends, because each end is fixed and
cannot oscillate. The simplest pattern that meets this key requirement is that
in Fig. 16-21a, which shows the string at both its extreme displacements (one
solid and one dashed, together forming a single “loop”). There is only one
antinode, which is at the center of the string. Note that half a wavelength
spans the length L, which we take to be the string’s length. Thus, for this
pattern, l/2 � L. This condition tells us that if the left-going and right-going
traveling waves are to set up this pattern by their interference, they must have
the wavelength l � 2L.

A second simple pattern meeting the requirement of nodes at the fixed ends
is shown in Fig. 16-21b.This pattern has three nodes and two antinodes and is said
to be a two-loop pattern. For the left-going and right-going waves to set it up,
they must have a wavelength l � L.A third pattern is shown in Fig. 16-21c. It has
four nodes, three antinodes, and three loops, and the wavelength is l � L.We could
continue this progression by drawing increasingly more complicated patterns. In
each step of the progression, the pattern would have one more node and one
more antinode than the preceding step, and an additional l/2 would be fitted into
the distance L.

Thus, a standing wave can be set up on a string of length L by a wave with a
wavelength equal to one of the values

for n � 1, 2, 3, . . . . (16-65)

The resonant frequencies that correspond to these wavelengths follow from
Eq. 16-13:

for n � 1, 2, 3, . . . . (16-66)

Here v is the speed of traveling waves on the string.
Equation 16-66 tells us that the resonant frequencies are integer multiples of

the lowest resonant frequency, f � v/2L, which corresponds to n � 1. The oscilla-
tion mode with that lowest frequency is called the fundamental mode or the first
harmonic. The second harmonic is the oscillation mode with n � 2, the third har-
monic is that with n � 3, and so on. The frequencies associated with these modes
are often labeled f1, f2, f3, and so on. The collection of all possible oscillation
modes is called the harmonic series, and n is called the harmonic number of the
nth harmonic.

For a given string under a given tension, each resonant frequency corre-
sponds to a particular oscillation pattern. Thus, if the frequency is in the audi-
ble range, you can hear the shape of the string. Resonance can also occur in
two dimensions (such as on the surface of the kettledrum in Fig. 16-22) and in
three dimensions (such as in the wind-induced swaying and twisting of a tall
building).

f �
v
�

� n 
v

2L
,

� �
2L
n

,

2
3
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41716-7 STANDING WAVES AND RESONANCE

(Answer)

Note that we get the same answer by substituting into Eq.
16-66:

(Answer)

Now note that this 806 Hz is not only the frequency of the
waves producing the fourth harmonic but also it is said to be
the fourth harmonic, as in the statement, “The fourth
harmonic of this oscillating string is 806 Hz.” It is also the
frequency of the string elements as they oscillate vertically
in the figure in simple harmonic motion, just as a block on a
vertical spring would oscillate in simple harmonic motion.
Finally, it is also the frequency of the sound you would hear
as the oscillating string periodically pushes against the air.

Transverse velocity: The displacement y of the string
element located at coordinate x is given by Eq. 16-67 as a
function of time t. The term cos vt contains the dependence
on time and thus provides the “motion” of the standing
wave. The term 2ym sin kx sets the extent of the motion—
that is, the amplitude. The greatest amplitude occurs at an
antinode, where sin kx is �1 or �1 and thus the greatest
amplitude is 2ym. From Fig. 16-23, we see that 2ym � 4.00 mm,
which tells us that ym � 2.00 mm.

We want the transverse velocity—the velocity of a
string element parallel to the y axis. To find it, we take the
time derivative of Eq. 16-67:

(16-69)

Here the term sin vt provides the variation with time and
the term �2ymv sin kx provides the extent of that varia-
tion. We want the absolute magnitude of that extent:

To evaluate this for the element at x � 0.180 m, we first note
that ym � 2.00 mm, k � 2p/l � 2p/(0.400 m), and v �
2pf � 2p (806.2 Hz). Then the maximum speed of the
element at x � 0.180 m is

um � � �2ymv sin kx �.

� [�2ym� sin kx] sin �t.

u(x, t) �
�y

�t
�

�

�t
 [(2ym sin kx) cos vt]

� 806 Hz.

f � n 
v

2L
� 4 

322.49 m/s
2(0.800 m)

 � 806.2 Hz � 806 Hz.

Figure 16-23 shows resonant oscillation of a string of mass
m � 2.500 g and length L � 0.800 m and that is under tension
t � 325.0 N. What is the wavelength l of the transverse
waves producing the standing wave pattern, and what is the
harmonic number n? What is the frequency f of the trans-
verse waves and of the oscillations of the moving string ele-
ments? What is the maximum magnitude of the transverse
velocity um of the element oscillating at coordinate x � 0.180 m?
At what point during the element’s oscillation is the trans-
verse velocity maximum?

KEY IDEAS

(1) The traverse waves that produce a standing wave pattern
must have a wavelength such that an integer number n of
half-wavelengths fit into the length L of the string. (2) The
frequency of those waves and of the oscillations of the string
elements is given by Eq. 16-66 ( f � nv/2L). (3) The displace-
ment of a string element as a function of position x and time
t is given by Eq. 16-60:

y(x, t) � [2ym sin kx] cos vt. (16-67)

Wavelength and harmonic number: In Fig. 16-23, the solid
line, which is effectively a snapshot (or freeze-frame) of the
oscillations, reveals that 2 full wavelengths fit into the length
L � 0.800 m of the string.Thus, we have

or (16-68)

(Answer)

By counting the number of loops (or half-wavelengths) in
Fig. 16-23, we see that the harmonic number is

n � 4. (Answer)

We also find n � 4 by comparing Eqs. 16-68 and 16-65 (l �
2L/n).Thus, the string is oscillating in its fourth harmonic.

Frequency: We can get the frequency f of the transverse waves
from Eq. 16-13 (v� lf ) if we first find the speed v of the waves.
That speed is given by Eq.16-26,but we must substitute m/L for
the unknown linear density m.We obtain

After rearranging Eq. 16-13, we write

f �
v
l

�
322.49 m/s

0.400 m

�
A

(325 N)(0.800 m)
2.50 � 10�3 kg

� 322.49 m/s.

 v �
A

t

m
�

A

t

m/L
�

A

tL
m

�
0.800 m

2
� 0.400 m.

 � �
L
2

.

 2l � L,

Figure 16-23 Resonant oscillation of a string under tension.
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Sample Problem 16.06 Resonance of transverse waves, standing waves, harmonics
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Transverse and Longitudinal Waves Mechanical waves
can exist only in material media and are governed by Newton’s
laws. Transverse mechanical waves, like those on a stretched string,
are waves in which the particles of the medium oscillate perpendi-
cular to the wave’s direction of travel. Waves in which the particles
of the medium oscillate parallel to the wave’s direction of travel
are longitudinal waves.

Sinusoidal Waves A sinusoidal wave moving in the positive
direction of an x axis has the mathematical form

y(x, t) � ym sin(kx � vt), (16-2)

where ym is the amplitude of the wave, k is the angular wave number,
v is the angular frequency, and kx � vt is the phase. The wavelength
l is related to k by

(16-5)

The period T and frequency f of the wave are related to v by

(16-9)

Finally, the wave speed v is related to these other parameters by

(16-13)

Equation of a Traveling Wave Any function of the form

y(x, t) � h(kx � vt) (16-17)

can represent a traveling wave with a wave speed given by Eq. 16-13
and a wave shape given by the mathematical form of h.The plus sign
denotes a wave traveling in the negative direction of the x axis, and
the minus sign a wave traveling in the positive direction.

Wave Speed on Stretched String The speed of a wave on
a stretched string is set by properties of the string. The speed on a
string with tension t and linear density m is

(16-26)

Power The average power of, or average rate at which energy is
transmitted by, a sinusoidal wave on a stretched string is given by

Pavg � (16-33)1
2mvv2y2

m.

v �
A

t

m
.

v �
�

k
�

�

T
� �f.

�

2�
� f �

1
T

.

k �
2�

�
.

Review & Summary

Superposition of Waves When two or more waves traverse
the same medium, the displacement of any particle of the medium is
the sum of the displacements that the individual waves would give it.

Interference of Waves Two sinusoidal waves on the same
string exhibit interference, adding or canceling according to the prin-
ciple of superposition. If the two are traveling in the same direction
and have the same amplitude ym and frequency (hence the same
wavelength) but differ in phase by a phase constant f, the result is a
single wave with this same frequency:

y(x, t) � [2ym cos f] sin(kx � vt � f). (16-51)

If f � 0, the waves are exactly in phase and their interference is
fully constructive; if f � p rad, they are exactly out of phase and
their interference is fully destructive.

Phasors A wave y(x, t) can be represented with a phasor. This
is a vector that has a magnitude equal to the amplitude ym of the
wave and that rotates about an origin with an angular speed equal
to the angular frequency v of the wave.The projection of the rotat-
ing phasor on a vertical axis gives the displacement y of a point
along the wave’s travel.

Standing Waves The interference of two identical sinusoidal
waves moving in opposite directions produces standing waves. For
a string with fixed ends, the standing wave is given by

y(x, t) � [2ym sin kx] cos vt. (16-60)

Standing waves are characterized by fixed locations of zero dis-
placement called nodes and fixed locations of maximum displace-
ment called antinodes.

Resonance Standing waves on a string can be set up by
reflection of traveling waves from the ends of the string. If an end
is fixed, it must be the position of a node. This limits the frequen-
cies at which standing waves will occur on a given string. Each pos-
sible frequency is a resonant frequency, and the corresponding
standing wave pattern is an oscillation mode. For a stretched string
of length L with fixed ends, the resonant frequencies are

for n � 1, 2, 3, . . . . (16-66)

The oscillation mode corresponding to n � 1 is called the funda-
mental mode or the first harmonic; the mode corresponding to 
n � 2 is the second harmonic; and so on.

f �
v
�

� n 
v

2L
,

1
2

1
2

418 CHAPTER 16 WAVES—I

(Answer)� 6.26 m/s.

� sin� 2p

0.400 m
 (0.180 m)� �

um � � �2(2.00 � 10�3 m)(2p)(806.2 Hz) 
To determine when the string element has this maxi-

mum speed, we could investigate Eq. 16-69. However, a little
thought can save a lot of work. The element is undergoing
SHM and must come to a momentary stop at its extreme 
upward position and extreme downward position. It has the
greatest speed as it zips through the midpoint of its oscilla-
tion, just as a block does in a block–spring oscillator.

Additional examples, video, and practice available at WileyPLUS
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Problems

1 A stretched string has a mass per unit length of 5.00 g/cm and a
tension of 10.0 N.A sinusoidal wave on this string has an amplitude
of 0.16 mm and a frequency of 100 Hz and is traveling in the 
negative direction of an x axis. If the wave equation is of the form
y(x, t) � ym sin(kx � vt), what are (a) ym, (b) k, (c) v, and (d) the
correct choice of sign in front of v?

2 The heaviest and lightest strings on a certain violin have linear
densities of 3.2 and 0.26 g/m. What is the ratio of the diameter of
the heaviest string to that of the lightest string, assuming that the
strings are of the same material?

3 A string fixed at both ends is 7.50 m long and has a mass of
0.120 kg. It is subjected to a tension of 96.0 N and set oscillating.
(a) What is the speed of the waves on the string? (b) What is the
longest possible wavelength for a standing wave? (c) Give the fre-
quency of that wave.

4 The equation of a transverse wave on a string is

y � (2.0 mm) sin[(15 m�1)x � (900 s�1)t].

The linear density is 4.17 g/m. (a) What is the wave speed? (b)
What is the tension in the string?

5 Two waves are generated on a string of length 4.0 m to produce a
three-loop standing wave with an amplitude of 1.0 cm. The wave 
speed is 100 m/s. Let the equation for one of the waves be of the form 
y(x, t) � ym sin(kx � vt). In the equation for the other wave, what are
(a) ym, (b) k, (c) v,and (d) the sign in front of v?

6 What phase difference between two identical traveling waves,
moving in the same direction along a stretched string, results in
the combined wave having an amplitude 0.852 times that of the
common amplitude of the two combining waves? Express your
answer in (a) degrees, (b) radians, and (c) wavelengths.

7 A 100 g wire is held under a tension of 220 N with one end at 
x � 0 and the other at x � 10.0 m. At time t � 0, pulse 1 is sent
along the wire from the end at x � 10.0 m. At time t � 30.0 ms,
pulse 2 is sent along the wire from the end at x � 0. At what posi-
tion x do the pulses begin to meet?

8 String A is stretched between two clamps separated by distance
L. String B, with the same linear density and under the same ten-
sion as string A, is stretched between two clamps separated by dis-
tance 3L. Consider the first eight harmonics of string B. For which
of these eight harmonics of B (if any) does the frequency match
the frequency of (a) A’s first harmonic, (b) A’s second harmonic,
and (c) A’s third harmonic?

9 Two sinusoidal waves with the
same amplitude of 6.00 mm and the
same wavelength travel together
along a string that is stretched along
an x axis. Their resultant wave is
shown twice in Fig. 16-24, as valley 
A travels in the negative direction 
of the x axis by distance d � 56.0 cm
in 8.0 ms. The tick marks along the
axis are separated by 10 cm, and
height H is 8.0 mm. Let the equation for one wave be of the form 
y(x, t) � ym sin(kx � vt � f1), where f1 � 0 and you must choose
the correct sign in front of v. For the equation for the other wave,
what are (a) ym, (b) k, (c) v, (d) f2, and (e) the sign in front of v?

10 The tension in a wire clamped at both ends is halved without
appreciably changing the wire’s length between the clamps. What
is the ratio of the new to the old wave speed for transverse waves
traveling along this wire?

11 Two identical traveling waves, moving in the same direction,
are out of phase by 0.70p rad. What is the amplitude of the result-
ant wave in terms of the common amplitude ym of the two combin-
ing waves?

12 A rope, with mass 1.39 kg and fixed at both ends, oscillates in
a second-harmonic standing wave pattern.The displacement of the
rope is given by

y � (0.10 m)(sin px/2) sin 12pt,

where x � 0 at one end of the rope, x is in meters, and t is in sec-
onds. What are (a) the length of the rope, (b) the speed of the
waves on the rope, and (c) the tension of the rope? (d) If the rope
oscillates in a third-harmonic standing wave pattern, what will be
the period of oscillation?

13 A sinusoidal wave travels along a string. The time for a partic-
ular point to move from maximum displacement to zero is 0.135 s.
What are the (a) period and (b) frequency? (c) The wavelength is
1.40 m; what is the wave speed?

14 For a particular transverse standing wave on a long string, one
of the antinodes is at x � 0 and an adjacent node is at x � 0.10 m.
The displacement y(t) of the string
particle at x � 0 is shown in Fig. 16-
25, where the scale of the y axis is
set by ys � 4.0 cm. When t � 0.50 s,
what is the displacement of the
string particle at (a) x � 0.20 m and
(b) x � 0.30 m? What is the trans-
verse velocity of the string particle
at x � 0.20 m at (c) t � 0.50 s and
(d) t � 1.0 s? (e) Sketch the stand-
ing wave at t � 0.50 s for the range
x � 0 to x � 0.40 m.

15 A sinusoidal transverse wave
of wavelength 18 cm travels along
a string in the positive direction of
an x axis. The displacement y of the
string particle at x � 0 is given in
Fig. 16-26 as a function of time t.
The scale  of the vertical axis is set
by ys � 4.0 cm. The wave equation is to be in the form 
y(x, t) � ym sin(kx � vt � f). (a) At t � 0, is a plot of y versus x in
the shape of a positive sine function or a negative sine function?
What are (b) ym, (c) k, (d) v, (e) f, (f) the sign in front of v, and (g)
the speed of the wave? (h) What is the transverse velocity of the par-
ticle at x � 0 when t � 5.0 s?

16 Two sinusoidal waves of the same frequency are to be sent in
the same direction along a taut string. One wave has an amplitude
of 5.50 mm, the other 12.0 mm. (a) What phase difference f1

between the two waves results in the smallest amplitude of the 
resultant wave? (b) What is that smallest amplitude? (c) What
phase difference f2 results in the largest amplitude of the resultant
wave? (d) What is that largest amplitude? (e) What is the resultant
amplitude if the phase angle is (f1 � f2)/2?
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Figure 16-24 Problem 9.
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Figure 16-25 Problem 14.
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Figure 16-26 Problem 15.
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17 A nylon guitar string has a linear
density of 7.20 g/m and is under a ten-
sion of 180 N. The fixed supports are
distance D � 90.0 cm apart. The string
is oscillating in the standing wave pat-
tern shown in Fig. 16-27. Calculate the
(a) speed, (b) wavelength, and (c) frequency of the traveling waves
whose superposition gives this standing wave.

18 A sinusoidal wave of angular frequency 1200 rad/s and am-
plitude 3.00 mm is sent along a cord with linear density 4.00 g/m
and tension 1200 N. (a) What is the average rate at which energy
is transported by the wave to the opposite end of the cord? (b) If, si-
multaneously, an identical wave travels along an adjacent, identical
cord, what is the total average rate at which energy is transported to
the opposite ends of the two cords by the waves? If, instead, those two
waves are sent along the same cord simultaneously, what is the total
average rate at which they transport energy when their phase differ-
ence is (c) 0, (d) 0.4p rad,and (e) p rad?

19 A generator at one end of a very long string creates a wave
given by

and a generator at the other end creates the wave

Calculate the (a) frequency, (b) wavelength, and (c) speed of each
wave. For x � 0, what is the location of the node having the (d)
smallest, (e) second smallest, and (f) third smallest value of x? For
x � 0, what is the location of the antinode having the (g) smallest,
(h) second smallest, and (i) third smallest value of x?

20 A string under tension ti oscillates in the third harmonic at fre-
quency f3, and the waves on the string have wavelength l3. If the ten-
sion is increased to tf � 8ti and the string is again made to oscillate in
the third harmonic, what then are (a) the frequency of oscillation in
terms of f3 and (b) the wavelength of the waves in terms of l3?

21 In Fig. 16-28, an
aluminum wire, of
length L1 � 60.0 cm,
cross-sectional area 1.25
� 10�2 cm2, and density
2.60 g/cm3, is joined to a
steel wire, of density
7.80 g/cm3 and the same
cross-sectional area. The
compound wire, loaded
with a block of mass
m � 10.0 kg, is arranged so that the distance L2 from the
joint to the supporting pulley is 86.6 cm. Transverse waves are set
up on the wire by an external source of variable frequency; a
node is located at the pulley. (a) Find the lowest frequency that
generates a standing wave having the joint as one of the nodes.
(b) How many nodes are observed
at this frequency?

22 A human wave. During sport-
ing events within large, densely
packed stadiums, spectators will
send a wave (or pulse) around the
stadium (Fig. 16-29). As the wave

y � (6.0 cm) cos 
p

2
 [(2.00 m�1)x � (6.00 s�1)t].

y � (6.0 cm) cos 
p

2
 [(2.00 m�1)x � (6.00 s�1)t],

reaches a group of spectators, they stand with a cheer and then sit.
At any instant, the width w of the wave is the distance from the lead-
ing edge (people are just about to stand) to the trailing edge (people
have just sat down). Suppose a human wave travels a distance of 853
seats around a stadium in 51 s, with spectators requiring about 1.8 s
to respond to the wave’s passage by standing and then sitting. What
are (a) the wave speed v (in seats per second) and (b) width w
(in number of seats)?

23 The linear density of a string is 1.9 � 10�4 kg/m. A transverse
wave on the string is described by the equation

y � (0.021 m) sin[(2.0 m�1)x � (30 s�1)t].

What are (a) the wave speed and (b) the tension in the string?

24 Two sinusoidal waves with identical wavelengths and
amplitudes travel in opposite directions along a string with a speed
of 15 cm/s. If the time interval between instants when the string is
flat is 0.20 s, what is the wavelength of the waves?

25 A string that is stretched between fixed supports separated by
75.0 cm has resonant frequencies of 450 and 308 Hz, with no inter-
mediate resonant frequencies. What are (a) the lowest resonant
frequency and (b) the wave speed?

26 If a transmission line in a cold climate collects ice, the in-
creased diameter tends to cause vortex formation in a passing
wind. The air pressure variations in the vortexes tend to cause the
line to oscillate (gallop), especially if the frequency of the varia-
tions matches a resonant frequency of the line. In long lines, the
resonant frequencies are so close that almost any wind speed can
set up a resonant mode vigorous enough to pull down support
towers or cause the line to short out with an adjacent line. If a
transmission line has a length of 310 m, a linear density of 3.35
kg/m, and a tension of 90.1 MN, what are (a) the frequency of the
fundamental mode and (b) the frequency difference between
successive modes?

27 Use the wave equation to find the speed of a wave given by

y(x, t) � (2.00 mm)[(15.0 m�1)x � (8.00 s�1)t]0.5.

D

Figure 16-27 Problem 17.

m

L 1  L 2

Aluminum Steel 

Figure 16-28 Problem 21.

w 

v

Figure 16-29 Problem 22.
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m 

Oscillator 

L 

Figure 16-30 Problems 28 and 30.

28 In Fig. 16-30, a string, tied to a sinusoidal oscillator at P and
running over a support at Q, is stretched by a block of mass m.
Separation L � 1.20 m, linear density m � 1.20 g/m, and the oscilla-
tor frequency f � 120 Hz.The amplitude of the motion at P is small
enough for that point to be
considered a node. A node
also exists at Q. (a) What
mass m allows the oscillator
to set up the fourth harmonic
on the string? (b) What
standing wave mode, if any,
can be set up if m � 1.00 kg?

29 In Fig. 16-31, a sinusoidal
wave moving along a string is

H x

A
y

d

Figure 16-31 Problem 29.
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shown twice as crest A travels in the positive direction of 
an x axis by distance d � 6.0 cm in 3.0 ms. The tick marks along 
the axis are separated by 10 cm; height H � 6.00 mm. The equation
for the wave is in the formy(x, t) � ym sin(kx � vt), so what 
are (a) ym, (b) k, (c) v, and (d) the correct choice of sign in front 
of v?

30 In Fig. 16-30, a string, tied to a sinusoidal oscillator at P and
running over a support at Q, is stretched by a block of mass m. The
separation L between P and Q is 1.20 m, and the frequency f of the
oscillator is fixed at 120 Hz. The amplitude of the motion at P is
small enough for that point to be considered a node. A node also
exists at Q.A standing wave appears when the mass of the hanging
block is 286.1 g or 447.0 g, but not for any intermediate mass. What
is the linear density of the string? 

31 A sinusoidal wave of frequency 500 Hz has a speed of 320 m/s.
(a) How far apart are two points that differ in phase by p/3 rad?
(b) What is the phase difference between two displacements at a
certain point at times 1.00 ms apart?

32 Use the wave equation to find the speed of a wave given by

y(x, t) � (3.00 mm) sin[(3.00 m�1)x � (8.00 s�1)t].

33 A wave has an angular frequency of 110 rad/s and a wave-
length of 1.50 m. Calculate (a) the angular wave number and
(b) the speed of the wave.

34 A string has mass 2.00 g, wave speed 120 m/s, and tension 7.00
N. (a) What is its length? (b) What is the lowest resonant frequency
of this string?

35 One of the harmonic frequen-
cies for a particular string under 
tension is 310 Hz. The next higher
harmonic frequency is 400 Hz. What
harmonic frequency is next higher af-
ter the harmonic frequency 850 Hz?

36 In Fig. 16-32a, string 1 has a
linear density of 3.00 g/m, and
string 2 has a linear density of 5.00
g/m. They are under tension due to
the hanging block of mass M � 800
g. Calculate the wave speed on (a)
string 1 and (b) string 2. (Hint:
When a string loops halfway
around a pulley, it pulls on the pul-
ley with a net force that is twice the
tension in the string.) Next the
block is divided into two blocks
(with M1 � M2 � M) and the appa-
ratus is rearranged as shown in
Fig. 16-32b. Find (c) M1 and (d) M2

such that the wave speeds in the
two strings are equal.

37 Two sinusoidal waves of the same
frequency travel in the same direction
along a string. If ym1 � 2.0 cm, ym2 �
4.0 cm, f1 � 0, and f2 � p/2 rad, what is
the amplitude of the resultant wave?

38 Figure 16-33 shows the transverse
velocity u versus time t of the point on a
string at x � 0, as a wave passes through

it.The scale on the vertical axis is set by us � 12 m/s.The wave has the
generic form y(x, t) � ym sin(kx � vt � f).What then is f? (Caution:
A calculator does not always give the proper inverse trig function, so
check your answer by substituting it and an assumed value of v into
y(x, t) and then plotting the function.)

39 These two waves travel along the same string:

y1(x, t) � (4.00 mm) sin(2px � 650pt)

y2(x, t) � (6.20 mm) sin(2px � 650pt � 0.60p rad).

What are (a) the amplitude and (b) the phase angle (relative to
wave 1) of the resultant wave? (c) If a third wave of amplitude
5.00 mm is also to be sent along the string in the same direction as
the first two waves, what should be its phase angle in order to
maximize the amplitude of the new resultant wave?

40 A standing wave pattern on a string is described by

y(x, t) � 0.040 (sin 4px)(cos 40pt),

where x and y are in meters and t is in seconds. For x � 0, what is the
location of the node with the (a) smallest, (b) second smallest, and
(c) third smallest value of x? (d) What is the period of the oscillatory
motion of any (nonnode) point? What are the (e) speed and (f) am-
plitude of the two traveling waves that interfere to produce this
wave? For t � 0, what are the (g) first, (h) second, and (i) third time
that all points on the string have zero transverse velocity?

41 A sinusoidal wave is sent along a string with a linear density of
5.0 g/m.As it travels, the kinetic energies of the mass elements along
the string vary. Figure 16-34a gives the rate dK/dt at which kinetic
energy passes through the string elements at a particular instant,
plotted as a function of distance x along the string. Figure 16-34b is
similar except that it gives the rate at which kinetic energy passes
through a particular mass element (at a particular location), plotted
as a function of time t. For both figures, the scale on the vertical (rate)
axis is set by Rs � 10 W.What is the amplitude of the wave?

M1 M2 

M 

String 1 
String 2 

Knot 

(a) 

(b) 

String 1 
String 2 

Figure 16-32 Problem 36.
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Figure 16-33 Problem 38.
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Figure 16-34 Problem 41.

42 The equation of a transverse wave traveling along a very long
string is y � 3.0 sin(0.020px � 4.0pt), where x and y are expressed
in centimeters and t is in seconds. Determine (a) the amplitude, (b)
the wavelength, (c) the frequency, (d) the speed, (e) the direction
of propagation of the wave, and (f) the maximum transverse speed
of a particle in the string. (g) What is the transverse displacement at
x � 3.5 cm when t � 0.26 s?

43 What is the speed of a transverse wave in a rope of 
length 1.75 m and mass 60.0 g under a tension of 500 N?

44 The function y(x, t) � (15.0 cm) cos(px � 15pt), with x in me-
ters and t in seconds, describes a wave on a taut string. What is the
transverse speed for a point on the string at an instant when that
point has the displacement y � �6.00 cm?

45 What are (a) the lowest frequency, (b) the second lowest fre-
quency, and (c) the third lowest frequency for standing waves on a
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wire that is 10.0 m long, has a mass
of 100 g, and is stretched under a
tension of 275 N?

46 A sand scorpion can detect the
motion of a nearby beetle (its prey)
by the waves the motion sends along
the sand surface (Fig. 16-35). The
waves are of two types: transverse
waves traveling at and
longitudinal waves traveling at

. If a sudden motion
sends out such waves, a scorpion can
tell the distance of the beetle from
the difference �t in the arrival times
of the waves at its leg nearest the
beetle. What is that time difference if
the distance to the beetle is 37.5 cm?

47 Two sinusoidal waves of the same period, with amplitudes of
5.0 and 7.0 mm, travel in the same direction along a stretched
string; they produce a resultant wave with an amplitude of 10.0
mm. The phase constant of the 5.0 mm wave is 0. What is the phase
constant of the 7.0 mm wave?

48 A sinusoidal wave is traveling on a string with speed 40 cm/s.
The displacement of the particles of the string at x � 10 cm varies
with time according to y � (4.0 cm) sin[5.0 � (4.0 s�1)t]. The linear
density of the string is 4.0 g/cm. What are (a) the frequency and 
(b) the wavelength of the wave? If the wave equation is of the form
y(x, t) � ym sin(kx � vt), what are (c) ym, (d) k, (e) v, and (f) the cor-
rect choice of sign in front of v? (g) What is the tension in the string?

49 The following two waves are sent in opposite directions on a
horizontal string so as to create a standing wave in a vertical plane:

y1(x, t) � (6.00 mm) sin(12.0px � 300pt)

y2(x, t) � (6.00 mm) sin(12.0px � 300pt),

with x in meters and t in seconds.An antinode is located at point A.
In the time interval that point takes to move from maximum up-
ward displacement to maximum downward displacement, how far
does each wave move along the string?

50 Four waves are to be sent along the same string, in the same
direction:

y1(x, t) � (5.00 mm) sin(4px � 400pt)

y2(x, t) � (5.00 mm) sin(4px � 400pt � 0.8p)

y3(x, t) � (5.00 mm) sin(4px � 400pt � p)

y4(x, t) � (5.00 mm) sin(4px � 400pt � 1.8p).

What is the amplitude of the resultant wave?

51 If a wave y(x, t) � (5.0 mm) sin(kx � (600 rad/s)t � f) travels
along a string, how much time does any given point on the string take
to move between displacements y � �2.0 mm and y � �2.0 mm?

52 A string along which waves can travel is 2.70 m long and has a
mass of 130 g. The tension in the string is 36.0 N. What must be the
frequency of traveling waves of amplitude 7.70 mm for the average
power to be 170 W?

53 A uniform rope of mass m and length L hangs from a ceiling.
(a) Show that the speed of a transverse wave on the rope is a func-
tion of y, the distance from the lower end, and is given by v �
(b) Show that the time a transverse wave takes to travel the length
of the rope is given by t � 21L/g.

1gy.

vl � 150 m/s

vt � 50 m/s

54 The speed of a transverse wave on a string is 115 m/s when the
string tension is 200 N. To what value must the tension be changed
to raise the wave speed to 223 m/s?

55 A sinusoidal transverse wave is
traveling along a string in the negative
direction of an x axis. Figure 16-36
shows a plot of the displacement as a
function of position at time t � 0; the
scale of the y axis is set by ys � 4.0
cm. The string tension is 3.6 N, and
its linear density is 28 g/m. Find the
(a) amplitude, (b) wavelength,
(c) wave speed, and (d) period of the
wave. (e) Find the maximum trans-
verse speed of a particle in the string.
If the wave is of the form y(x, t) � ym sin(kx � vt � f), what are
(f) k, (g) v, (h) f, and (i) the correct choice of sign in front of v?

56 Use the wave equation to find the speed of a wave given in
terms of the general function h(x, t):

y(x, t) � (4.00 mm) h[(22.0 m�1)x � (8.00 s�1)t].

57 A transverse sinusoidal wave is moving along a string in the posi-
tive direction of an x axis with a speed of 70 m/s. At t � 0, the string
particle at x � 0 has a transverse displacement of 4.0 cm and is not
moving.The maximum transverse speed of the string particle at x � 0
is 16 m/s. (a) What is the frequency of the wave? (b) What is the wave-
length of the wave? If y(x, t) � ym sin(kx � vt � f) is the form of the
wave equation, what are (c) ym, (d) k, (e) v, (f) f, and (g) the correct
choice of sign in front of v?

58 A sinusoidal wave travels
along a string under tension.
Figure 16-37 gives the slopes
along the string at time t � 0. The
scale of the x axis is set by xs �
0.40 m. What is the amplitude of
the wave?

59 A string oscillates according to the equation

What are the (a) amplitude and (b) speed of the two waves (identical
except for direction of travel) whose superposition gives this oscilla-
tion? (c) What is the distance between nodes? (d) What is the trans-
verse speed of a particle of the string at the position x � 2.1 cm when
t � 0.50 s?

60 Two sinusoidal waves with
the same amplitude and wave-
length travel through each
other along a string that is
stretched along an x axis.Their
resultant wave is shown twice
in Fig. 16-38, as the antinode A
travels from an extreme up-
ward displacement to an ex-
treme downward displacement
in 6.0 ms. The tick marks along
the axis are separated by 15 cm; height H is 1.20 cm. Let the equation
for one of the two waves be of the form y(x, t) � ym sin(kx � vt). In
the equation for the other wave, what are (a) ym, (b) k, (c) v, and (d)
the sign in front of v?

y � (0.80 cm) sin�� p

3
 cm�1�x � cos[(40p s�1)t].

Figure 16-35 Problem 46.
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